

Please write clearly in	า block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

A-level FURTHER MATHEMATICS

Paper 2

Monday 5 June 2023

Afternoon

Time allowed: 2 hours

Materials

- You must have the AQA Formulae and statistical tables booklet for A-level Mathematics and A-level Further Mathematics.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do **not** write outside the box around each page or on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
TOTAL	

Answer all questions in the spaces provided.

Given that $y = \sin x + \sinh x$, find $\frac{d^2y}{dx^2} + y$ 1

Circle your answer.

[1 mark]

- $2\sin x$
- $-2\sin x$
- $2 \sinh x$
- $-2 \sinh x$
- Which one of the expressions below is **not** equal to zero? 2

Circle your answer.

[1 mark]

$$\lim_{x \to \infty} (x^2 e^{-x})$$

$$\lim_{x\to 0} (x^5 \ln x)$$

$$\lim_{x \to \infty} (x^2 \mathrm{e}^{-x}) \qquad \qquad \lim_{x \to 0} (x^5 \ln x) \qquad \qquad \lim_{x \to \infty} \left(\frac{\mathrm{e}^x}{x^5}\right) \qquad \qquad \lim_{x \to 0} (x^3 \mathrm{e}^x)$$

$$\lim_{x\to 0} (x^3 e^x)$$

3 The determinant A =3 2 1

> Which one of the determinants below has a value which is **not** equal to the value of A? Tick (✓) one box.

> > [1 mark]

3	1	3	
2	0	2	
3	2	1	

It is given that $f(x) = \cosh^{-1}(x-3)$ 4

> Which of the sets listed below is the greatest possible domain of the function f? Circle your answer.

[1 mark]

$$\{x: x \ge 4\}$$
 $\{x: x \ge 3\}$ $\{x: x \ge 1\}$ $\{x: x \ge 0\}$

$$\int \mathbf{r} \cdot \mathbf{r} > 3$$

$$\{x : x > 1\}$$

$$\{x:x\geq 0\}$$

5 Josh and Zoe are solving the following mathematics problem:

The curve C_1 has equation

$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

The matrix
$$\mathbf{M} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 maps C_1 onto C_2

Find the equations of the asymptotes of C_2

Josh says that to solve this problem you **must** first carry out the transformation on C_1 to find C_2 , and then find the asymptotes of C_2

Zoe says that you will get the same answer if you first find the asymptotes of C_1 , and then carry out the transformation on these asymptotes to obtain the asymptotes of C_2

Show that Zoe is correct.	[5 marks]

6 (a)	Express $-5-5\mathrm{i}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$, where $-\pi<\theta\leq\pi$ [2 marks
6 (b)	The point on an Argand diagram that represents $-5-5i$ is one of the vertices of an equilateral triangle whose centre is at the origin.
	Find the complex numbers represented by the other two vertices of the triangle.
	Give your answers in the form $r\mathrm{e}^{\mathrm{i}\theta}$, where $-\pi < \theta \leq \pi$ [3 marks

$$\sum_{r=11}^{n+1} r^3 = \frac{1}{4} (n^2 + an + b)(n^2 + an + c)$$

where a,b and c are integers to be found.	[3 mar

8	\boldsymbol{A} is a non-singular 2×2 matrix and \boldsymbol{A}^T is the transpose of \boldsymbol{A}	
8 (a)	Using the result	
	$(\mathbf{A}\mathbf{B})^{\mathrm{T}}=\mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$	
	show that	
	$(\mathbf{A}^{-1})^{\mathrm{T}} = (\mathbf{A}^{\mathrm{T}})^{-1}$	
		[3 marks]
8 (b)	It is given that $\mathbf{A} = \begin{bmatrix} 4 & 5 \\ -1 & k \end{bmatrix}$, where k is a real constant.	
8 (b) (i)	Find $(\mathbf{A}^{-1})^{\mathrm{T}}$, giving your answer in terms of k	[2 marks]
0 (1-) (11)		
8 (b) (II)	State the restriction on the possible values of k	[1 mark]

9	The complex number z is such that
	$z = \frac{1 + \mathrm{i}}{1 - k \mathrm{i}}$
	where k is a real number.
9 (a)	Find the real part of z and the imaginary part of z , giving your answers in terms of k [2 marks]
9 (b)	In the case where $k=\sqrt{3},$ use part (a) to show that
	$\cos\frac{7\pi}{12} = \frac{\sqrt{2} - \sqrt{6}}{4}$
	12 4 [5 marks]

- The region R on an Argand diagram satisfies both $|z+2i| \le 3$ and $-\frac{\pi}{6} \le \arg(z) \le \frac{\pi}{2}$
- **10 (a)** Sketch *R* on the Argand diagram below.

[3 marks]

10 (b)	Find the maximum value of $ z $ in the region R , giving your answer in exact f	orm. [5 marks]
	Turn over for the next question	

11	The line l_1 passes through the points $A(6, 2, 7)$ and $B(4, -3, 7)$	
11 (a)	Find a Cartesian equation of l_1	[2 marks]
	Γ87 Γ17	
11 (b)	The line l_2 has vector equation $\mathbf{r} = \begin{bmatrix} 8 \\ 9 \\ c \end{bmatrix} + \mu \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ where c is a constant.	
11 (b) (i)	Explain how you know that the lines l_1 and l_2 are not perpendicular.	[2 marks]

11 (b) (ii)	The lines l_1 and l_2 both lie in the same plane.	
	Find the value of c	[5 a.ul.a.]
		[5 marks]
	Turn over for the next question	

12	The function f is defined by	
	$f(n) = 3^{3n+1} + 2^{3n+4}$ $(n \in \mathbb{Z}^+)$	
	Prove by induction that $f(n)$ is divisible by 19 for $n \ge 1$	[6 marks]

15 Do not write outside the box Turn over for the next question

Turn over ▶

13	The quadratic equation $z^2-5z+8=0$ has roots α and β	
13 (a)	Write down the value of $\alpha+\beta$ and the value of $\alpha\beta$	[2 marks]
13 (b)	Without finding the value of α or the value of β , show that $\alpha^4 + \beta^4 = -47$	[4 marks]

13 (c)	Find a quadratic equation, with integer coefficients, which has roots $\alpha^3+\beta$ and $\beta^3+\alpha$	
	and $p^{\alpha} + \alpha$	[5 marks]
	Turn over for the next question	

1 7

14	The function f is defined by	
	$f(x) = \frac{1}{4x^2 + 16x + 19} \qquad (x \in \mathbb{R})$	
14 (a)	Show, without using calculus, that the graph of $y = f(x)$ has a stationary at $\left(-2, \frac{1}{3}\right)$	point
	Gr (2, 3)	[3 marks]
44 (1.)	Show that $\int_{-2}^{-\frac{1}{2}} f(x) dx = \frac{\pi\sqrt{3}}{18}$	
14 (b)	Show that $\int_{-2}^{1} f(x) dx = \frac{18}{18}$	[5 marks]

	Do not write outside the box
rks]	

14 (c)	Find the value of $\int_{-2}^{\infty} f(x) dx$	
	Fully justify your answer.	
		[2 marks]

15 (a)	Given that $z=\cos heta+\mathrm{i}\sin heta$, use de Moivre's theorem to show that	
	$z^n - z^{-n} = 2i\sin n\theta$	[2 marks]
15 (b)	The series S is defined as	
	$S = \sin\theta + \sin 3\theta + + \sin (2n - 1)\theta$	
	Use part (a) to express S in the form	
	$S = \frac{1}{2i}(G_1) - \frac{1}{2i}(G_2)$	
	where each of G_1 and G_2 is a geometric series.	[3 marks]

15 (c)	Hence, show that		
		$S = \frac{\sin^2\left(n\theta\right)}{\sin\theta}$	
		$S = \frac{1}{\sin \theta}$	[5 marks]
			[5 marks]

16	A bungee jumper of mass m kg is attached to an elastic rope. The other end of the rope is attached to a fixed point.
	The bungee jumper falls vertically from the fixed point.
	At time t seconds after the rope first becomes taut, the extension of the rope is x metres and the speed of the bungee jumper is v m s ⁻¹
16 (a)	A model for the motion while the rope remains taut assumes that the forces acting on the bungee jumper are
	the weight of the bungee jumper
	a tension in the rope of magnitude kx newtons
	an air resistance force of magnitude Rv newtons
	where k and R are constants such that $4km > R^2$
16 (a) (i)	Show that this model gives the result
	$x = e^{-\frac{Rt}{2m}} \left(A \cos \frac{\sqrt{4km - R^2}}{2m} \right) t + B \sin \frac{\sqrt{4km - R^2}}{2m} t + \frac{mg}{k}$
	where A and B are constants, and $g \mathrm{m} \mathrm{s}^{-2}$ is the acceleration due to gravity.
	You do not need to find the value of <i>A</i> or the value of <i>B</i>
	[6 marks]

16 (a) (ii)	It is also given that:
	k = 16
	R = 20
	m = 62.5
	$g=9.8\mathrm{ms^{-2}}$
	and that the speed of the bungee jumper when the rope becomes taut is $14\mathrm{ms^{-1}}$
	Show that, to the nearest integer, $A=-38$ and $B=16$ [6 marks]
	[o marks]
	

16 (b)	A second, simpler model assumes that the air resistance is zero.
	The values of k , m and g remain the same.
	Find an expression for x in terms of t according to this simpler model, giving the values of all constants to two significant figures.
	[4 marks]

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 AQA and its licensors. All rights reserved.

