

Please write clearly in block ca	pitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature I declare t	nis is my own work.

AS FURTHER MATHEMATICS

Paper 1

Monday 15 May 2023

Afternoon

Time allowed: 1 hour 30 minutes

Materials

- You must have the AQA Formulae and statistical tables booklet for A-level Mathematics and A-level Further Mathematics.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do **not** write outside the box around each page or on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
TOTAL	

Answer all	questions	in 1	the s	spaces	provided.

1 Which expression below is equivalent to tanh x?

Circle your answer.

[1 mark]

$$\sinh x \cosh x$$

$$\frac{\sinh x}{\cosh x}$$

$$\frac{\cosh x}{\sinh x}$$

$$\sinh x + \cosh x$$

The two vectors \mathbf{a} and \mathbf{b} are such that $\mathbf{a}.\mathbf{b} = \mathbf{0}$

State the angle between the vectors **a** and **b**

Circle your answer.

[1 mark]

3 The matrices A and B are given by

$$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 0 & 5 \end{bmatrix} \qquad \qquad \mathbf{B} = \begin{bmatrix} 0 & 4 \\ 7 & 1 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 0 & 4 \\ 7 & 1 \end{bmatrix}$$

Calculate AB

Circle your answer.

[1 mark]

$$\begin{bmatrix} 3 & 5 \\ 7 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 5 \\ 7 & 6 \end{bmatrix} \qquad \begin{bmatrix} 0 & 20 \\ 21 & 12 \end{bmatrix} \qquad \begin{bmatrix} 0 & 4 \\ 0 & 5 \end{bmatrix} \qquad \begin{bmatrix} 7 & 13 \\ 35 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 4 \\ 0 & 5 \end{bmatrix}$$

4 The roots of the equation

$$5x^3 + 2x^2 - 3x + p = 0$$

are α , β and γ

Given that p is a constant, state the value of $\alpha\beta+\beta\gamma+\gamma\alpha$

Circle your answer.

[1 mark]

$$-\frac{3}{5}$$

$$-\frac{2}{5}$$

5	The function f is defined b	У		
		$f(x) = 3x^2$	$1 \le x \le 5$	
5 (a)	Find the mean value of f			[2 marks]
5 (b)	The function g is defined by	DV.		
0 (5)	The fullotion g is defined to		$1 \le x \le 5$	
	The mean value of g is 40			
	Calculate the value of the	constant c		[2 marks]

Find and simplify the first five terms in the Maclaurin series for e^{2x}	[2
Hence, or otherwise, write down the first five terms in the Maclaurin series for	· e-
Hence, or otherwise, show that the Maclaurin series for $\cosh(2x)$ is	
$a+bx^2+cx^4+\dots$	
where a,b and c are rational numbers to be determined.	[3

	1 1 2
	$\frac{1}{2r-1} - \frac{1}{2r+1} = \frac{2}{(2r-1)(2r+1)}$
[1 :	
-	
	Hence, using the method of differences, show that
	$\sum_{r=1}^{n} \frac{1}{(2r-1)(2r+1)} = \frac{an}{bn+c}$
	$\sum_{r=1}^{\infty} (2r-1)(2r+1)$ $bn+c$
	where a , b and c are integers to be determined.
[4 m	

7 (c)		
	$\frac{1}{1 \times 2} + \frac{1}{2 \times 5} + \frac{1}{5 \times 7} + \dots + \frac{1}{00 \times 101}$	
	1 × 3 × 3 × 7 99 × 101	[2 marks]
		[2 marks]
7 (c)	Hence, or otherwise, evaluate $\frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \dots + \frac{1}{99\times 101}$	[2 marks]

8	Abdoallah wants to write the complex number $-1 + i\sqrt{3}$ in the form $r(\cos \theta + i \sin \theta)$
	where $r \ge 0$ and $-\pi < \theta \le \pi$

Here is his method:

$$r = \sqrt{(-1)^2 + (\sqrt{3})^2}$$

$$= \sqrt{1+3}$$

$$= \sqrt{4}$$

$$= 2$$

$$\tan \theta = \frac{\sqrt{3}}{-1}$$

$$\Rightarrow \tan \theta = -\sqrt{3}$$

$$\Rightarrow \theta = \tan^{-1}(-\sqrt{3})$$

$$\Rightarrow \theta = -\frac{\pi}{3}$$

$$-1+i\sqrt{3}=2\biggl(cos\Bigl(-\frac{\pi}{3}\Bigr)+i\,sin\left(-\frac{\pi}{3}\Bigr)\biggr)$$

There is an error in Abdoallah's method.

8 (a) Show that Abdoallah's answer is wrong by writing

$$2\!\left(\!\cos\!\left(\!-\frac{\pi}{3}\right)\!+i\,\sin\left(\!-\frac{\pi}{3}\right)\!\right)$$

in the form x + iy

Simplify your answer.

[1 mark]

 0	8	

b) Explain the error in Abdoallah's method.	[1 ma
Express $-1 + i\sqrt{3}$ in the form $r(\cos \theta + i \sin \theta)$	[1 m
d) Write down the complex conjugate of $-1 + i\sqrt{3}$	[4 m
	[1 ma

$\mathbf{M} = \begin{bmatrix} 3p+1 & 12 \\ p+2 & p^2-3 \end{bmatrix}$	
In the case when $p=0$ show that the image of the point (4, 5) under T is the point (64, -7)	
	[2 mark

Show that $p = 3$ is the only real value of p for which \mathbf{M} is sin	I

10 The curve C has equation

$$y = \frac{3x^2 + mx + p}{x^2 + px + m}$$

where m and p are integers.

The vertical asymptotes of C are x = -4 and x = -1

The curve C is shown in the diagram below.

10 (a)	Write down the equation of the horizontal asymptote of C	
		[1 mark]

10 (b) Find the value of m and the value of p [2 marks]

es of the <i>y</i> -intercept of C	[1
–1 does not intersect C	[5

11	A point has Cartesian coordinates (x,y) and polar coordinates (r,θ) where $r \geq 0$ and $-\pi < \theta \leq \pi$	
11 (a)	Express r in terms of x and y	[1 mark]
11 (b)	Express x in terms of r and θ	[1 mark]
11 (c)	The curve C_1 has the polar equation $r(2+\cos\theta)=1 \qquad \qquad -\pi < \theta \leq \pi$	
11 (c) (i)	Show that the Cartesian equation of C_1 can be written as	
	$ay^2 = (1 + bx)(1 + x)$	
	where a and b are integers to be determined.	[4 marks]

11 (c) (ii)	The curve C_2 has the Cartesian equation
(0) ()	
	$ax^2 = (1+by)(1+y)$
	where a and b take the same values as in part (c)(i).
	Describe fully a single transformation that maps the curve C_1 onto the curve C_2
	[2 marks]

12 (a)	Show that $(1 + i)^4 = -4$	[3 marks]
12 (b)	The function f is defined by	
	$f(z) = z^4 + 3z^2 - 6z + 10$ $z \in \mathbb{C}$	
12 (b) (i)	Show that $(1 + i)$ is a root of $f(z) = 0$	[2 marks]
12 (b) (ii)	Hence write down another root of $f(z) = 0$	
12 (b) (11)	Hence write down another root of $f(z) = 0$	[1 mark]

12 (b) (iii)	One of the linear factors of $f(z)$ is	
	(z-(1+i))	
	Write down another linear factor and hence, or otherwise, find a quadratic fact of $f(z)$ with real coefficients.	or
		[3 marks]
12 (b) (iv)	Find another quadratic factor of $f(z)$ with real coefficients.	[2 marks]
12 (b) (v)	Hence explain why the graph of $y = f(x)$ does not intersect the <i>x</i> -axis.	
		[2 marks]

$\sum r^2 = \frac{1}{6}n(n+1)(2n+1)$	
$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$	F4
	[4 ma

Hence, or otherwise, write down a factorised expression for the sum of the first $2n$ squares		
$1^2 + 2^2 + 3^2 + \ldots + (2n)^2$ [1 r		
•		
Use the formula in part (a) to write down a factorised expression for the sum of the first n even squares		
$2^2 + 4^2 + 6^2 + \ldots + (2n)^2$		
[2 m		
Hence, or otherwise, show that the sum of the first n odd squares is		
an(bn-1)(bn+1)		
where a and b are rational numbers to be determined.		
[3 m		
i l		

	$(x^2-5x-24)(x^2+7x+a)<0$	
nas the solution set		
ias the solution set		
	$\{x: -9 < x < -3\} \cup \{x: 2 < x < b\}$	
ind the values of ir	ntegers a and b	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	
	Copyright information For confidentiality purposes, all acknowledgements of third party copyright material are published in a coparate booklet. This	
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.	
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.	
	Copyright © 2023 AQA and its licensors. All rights reserved.	

