

Please write clearly in block capitals.

Centre number

|  |  |  |  |  |
|--|--|--|--|--|
|  |  |  |  |  |
|--|--|--|--|--|

Candidate number

|  |  |  |  |
|--|--|--|--|
|  |  |  |  |
|--|--|--|--|

Surname

---

Forename(s)

---

Candidate signature

---

I declare this is my own work.

# AS

# FURTHER MATHEMATICS

Paper 1

Monday 13 May 2024

Afternoon

Time allowed: 1 hour 30 minutes

## Materials

- You must have the AQA Formulae and statistical tables booklet for A-level Mathematics and A-level Further Mathematics.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

## Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- You must answer each question in the space provided for that question. If you require extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do **not** write outside the box around each page or on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

## Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

## Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

| For Examiner's Use |      |
|--------------------|------|
| Question           | Mark |
| 1                  |      |
| 2                  |      |
| 3                  |      |
| 4                  |      |
| 5                  |      |
| 6                  |      |
| 7                  |      |
| 8                  |      |
| 9                  |      |
| 10                 |      |
| 11                 |      |
| 12                 |      |
| 13                 |      |
| 14                 |      |
| 15                 |      |
| 16                 |      |
| 17                 |      |
| <b>TOTAL</b>       |      |



J U N 2 4 7 3 6 6 1 0 1

G/LM/Jun24/G4001/V5

**7366/1**

Answer **all** questions in the spaces provided.

1 Express  $\cosh^2 x$  in terms of  $\sinh x$

Circle your answer.

**[1 mark]**

$1 + \sinh^2 x$

$1 - \sinh^2 x$

$\sinh^2 x - 1$

$-1 - \sinh^2 x$

2 The function  $f$  is defined by

$f(x) = 2x + 3 \quad 0 \leq x \leq 5$

The region  $R$  is enclosed by  $y = f(x)$ ,  $x = 5$ , the  $x$ -axis and the  $y$ -axis.

The region  $R$  is rotated through  $2\pi$  radians about the  $x$ -axis.

Give an expression for the volume of the solid formed.

Tick ( $\checkmark$ ) **one** box.

**[1 mark]**

$\pi \int_0^5 (2x + 3) dx$

$\pi \int_0^5 (2x + 3)^2 dx$

$2\pi \int_0^5 (2x + 3) dx$

$2\pi \int_0^5 (2x + 3)^2 dx$



3 The matrix  $\mathbf{A}$  is such that  $\det(\mathbf{A}) = 2$

Determine the value of  $\det(\mathbf{A}^{-1})$

Circle your answer.

**[1 mark]**

-2

$-\frac{1}{2}$

$\frac{1}{2}$

2

4 The line  $L$  has vector equation

$$\mathbf{r} = \begin{bmatrix} 4 \\ -7 \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} -9 \\ 1 \\ 3 \end{bmatrix}$$

Give the equation of  $L$  in Cartesian form.

Tick (✓) one box.

**[1 mark]**

$$\frac{x+4}{-9} = \frac{y-7}{1} = \frac{z}{3}$$

$$\frac{x-4}{-9} = \frac{y+7}{1} = \frac{z}{3}$$

$$\frac{x+9}{4} = \frac{y-1}{-7}, z = 3$$

$$\frac{x-9}{4} = \frac{y+1}{-7}, z = 3$$

Turn over ►



0 3

G/Jun24/7366/1

5 The vectors **a** and **b** are given by

$$\mathbf{a} = 3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k} \quad \text{and} \quad \mathbf{b} = 2\mathbf{i} - \mathbf{j} - 5\mathbf{k}$$

5 (a) Calculate  $\mathbf{a} \cdot \mathbf{b}$

[1 mark]

---

---

---

5 (b) Calculate  $|\mathbf{a}|$  and  $|\mathbf{b}|$

[2 marks]

---

---

---

---

---

---

$$|\mathbf{a}| = \underline{\hspace{2cm}} \quad |\mathbf{b}| = \underline{\hspace{2cm}}$$

5 (c) Calculate the acute angle between **a** and **b**

Give your answer to the nearest degree.

[2 marks]

---

---

---

---

---

---



6 (a) On the axes below, sketch the graph of

$$y = \cosh x$$

Indicate the value of any intercept of the curve with the axes.

[2 marks]

**6 (b)** Solve the equation

$$\cosh x = 2$$

Give your answers to three significant figures.

[2 marks]



---

Turn over ►



**There are no questions printed on this page**

*Do not write  
outside the  
box*

**DO NOT WRITE ON THIS PAGE  
ANSWER IN THE SPACES PROVIDED**



0 6

G/Jun24/7366/1

7 The function  $f$  is defined by

$$f(x) = \frac{1}{\sqrt{x}} \quad 4 \leq x \leq 7$$

Find the mean value of  $f$  over the interval  $4 \leq x \leq 7$

Give your answer in exact form.

[3 marks]

**Turn over ►**



**8 (a)** The complex number  $z$  is given by  $z = x + iy$  where  $x, y \in \mathbb{R}$

**8 (a) (i)** Write down the complex conjugate  $z^*$  in terms of  $x$  and  $y$

**[1 mark]**

---

---

---

**8 (a) (ii)** Hence prove that  $zz^*$  is real for all  $z \in \mathbb{C}$

**[2 marks]**

---

---

---

---

---

---

---

---

---

---

---

---

---

---

---

---

---

---



8 (b) The complex number  $w$  satisfies the equation

$$3w + 10i = 2w^* + 5$$

**8 (b) (i) Find  $w$**

[3 marks]

8 (b) (ii) Calculate the value of  $w^2(w^*)^2$

[1 mark]

---

---

---

---

---

---

Turn over ►



**9 (a)** Show that, for all positive integers  $r$ ,

$$\frac{r+1}{r+2} - \frac{r}{r+1} = \frac{1}{(r+1)(r+2)}$$

[1 mark]

**9 (b)** Hence, using the method of differences, show that

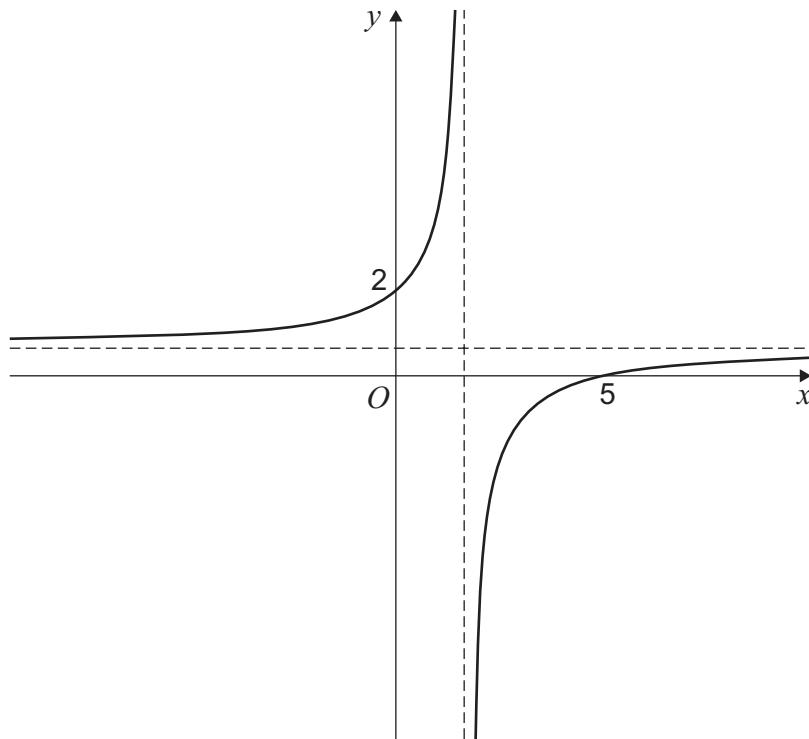
$$\sum_{r=1}^n \frac{1}{(r+1)(r+2)} = \frac{n}{an+b}$$

where  $a$  and  $b$  are integers to be determined.

[3 marks]

*Do not write outside the box*

**9 (c)** Hence find the exact value of


$$\sum_{r=1001}^{2000} \frac{1}{(r+1)(r+2)}$$

[3 marks]



**10**The curve  $C$  has equation

$$y = \frac{2x - 10}{3x - 5}$$

Do not write  
outside the  
box**Figure 1** shows the curve  $C$  with its asymptotes.**Figure 1****10 (a)** Write down the equations of the asymptotes of  $C$ **[2 marks]**


---



---



---



---



---



**10 (b)** The line  $L$  has equation

$$y = -\frac{2}{5}x + 2$$

**10 (b) (i)** Draw the line  $L$  on **Figure 1**

[2 marks]

---

---

**10 (b) (ii)** Hence, or otherwise, solve the inequality

$$\frac{2x - 10}{3x - 5} \leq -\frac{2}{5}x + 2$$

[2 marks]

---

---

---

**Turn over for the next question**



1 3

**Turn over ►**

11 The matrices **A** and **B** are given by

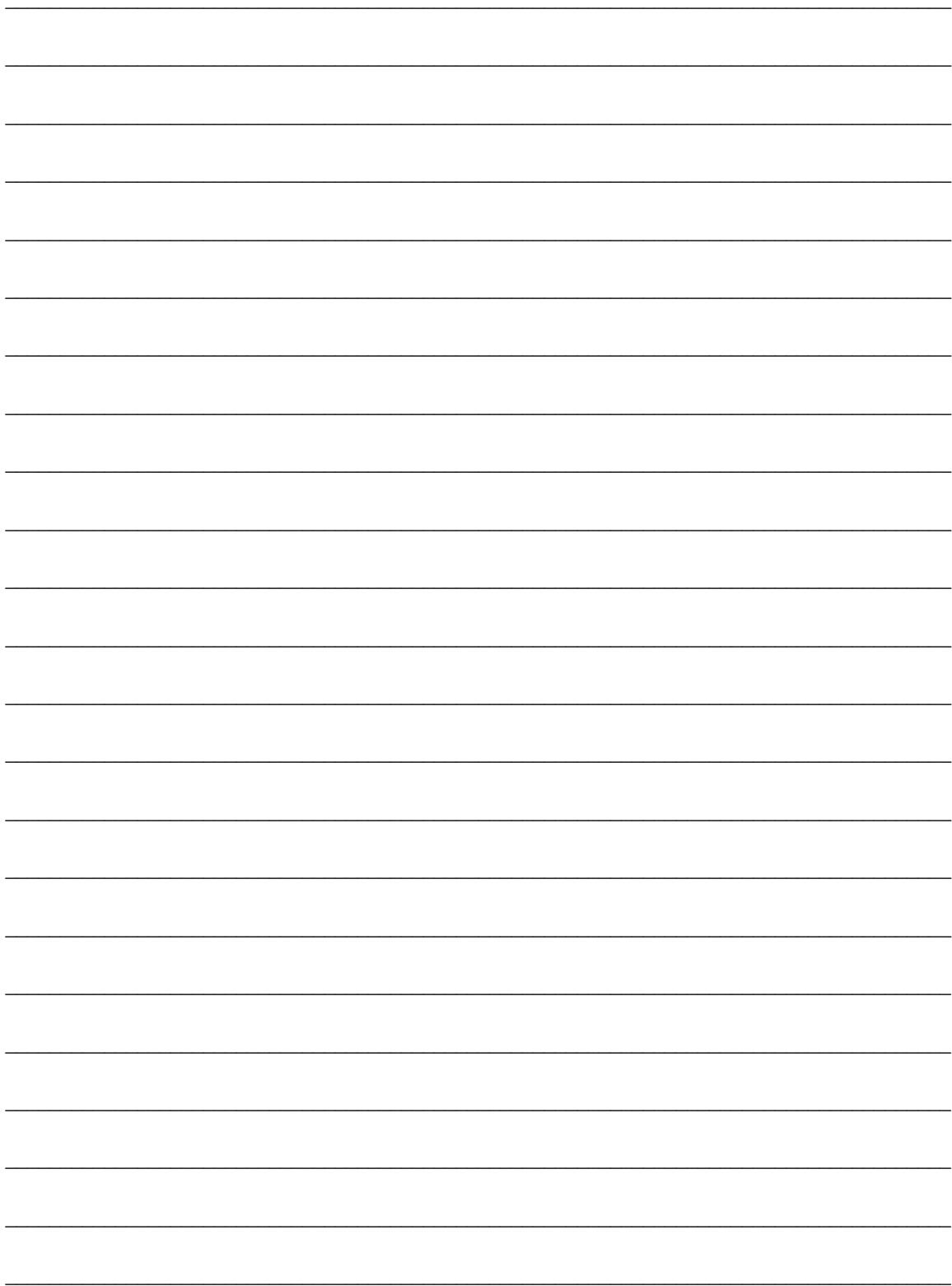
$$\mathbf{A} = \begin{bmatrix} 3i & -2 \\ a & -i \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 4 & 5 \\ -2i & -1 \end{bmatrix}$$

where  $a$  is a real number.

Calculate the product  $\mathbf{AB}$  in terms of  $a$

Give your answer in its simplest form.

[3 marks]




12 Prove by induction that, for all  $n \in \mathbb{N}$ , the expression

$$5^n - 2^n$$

is divisible by 3

[4 marks]



**Turn over ►**



13 The cubic equation  $x^3 - x - 7 = 0$  has roots  $\alpha, \beta$  and  $\gamma$

The cubic equation  $p(x) = 0$  has roots  $\alpha - 1, \beta - 1$  and  $\gamma - 1$

The coefficient of  $x^3$  in  $p(x)$  is 1

13 (a) Describe fully the transformation that maps the graph of  $y = x^3 - x - 7$  onto the graph of  $y = p(x)$

[2 marks]

---

---

---

---

---

13 (b) Find  $p(x)$

[3 marks]



---

---

---

---

---

---

**Turn over for the next question**

**Turn over ►**



**14** The matrix  $\mathbf{M}$  represents the transformation  $T$ , and is given by

$$\mathbf{M} = \begin{bmatrix} 3 & -1 \\ -2 & 6 \end{bmatrix}$$

**14 (a)** The point  $A$  has coordinates  $(4, -5)$

Find the coordinates of the image of  $A$  under  $T$

**[2 marks]**

---



---



---



---



---



---



---



---



---

**14 (b)** Show that the only invariant point under  $T$  is the origin.

**[3 marks]**

---



---



---



---



---



---



---



---



---



---



---



---



---



---



---



---



---



---



*Do not write outside the box*

14 (c) The line  $L_1$  has equation  $y = x + 1$

The transformation  $T$  maps the line  $L_1$  onto the line  $L_2$

Find the equation of  $L_2$  in the form  $y = mx + c$

[5 marks]

**Turn over ►**



**15 (a)** Use Maclaurin's series expansion for  $\ln(1 + x)$  to show that the first three terms of the Maclaurin's series expansion of  $\ln(1 + 3x)$  are

$$3x - \frac{9}{2}x^2 + 9x^3$$

**[1 mark]**

---



---



---



---



---



---



---

**15 (b)** Julia attempts to use the series expansion found in part (a) to find an approximation for  $\ln 4$

Julia's incorrect working is shown below.

$$\text{Let } 1 + 3x = 4$$

$$3x = 3$$

$$x = 1$$

$$\begin{aligned} \text{So } \ln 4 &\approx 3 \times 1 - \frac{9}{2} \times 1^2 + 9 \times 1^3 \\ &\approx 3 - 4.5 + 9 \\ &\approx 7.5 \end{aligned}$$

Explain the error in Julia's working.

**[2 marks]**

---



---



---



---



---



---



---



15 (c) Use  $x = -\frac{1}{6}$  in the series expansion found in part (a) to find an approximation for  $\ln 4$

Fully justify your answer.

[4 marks]

---

Turn over ►



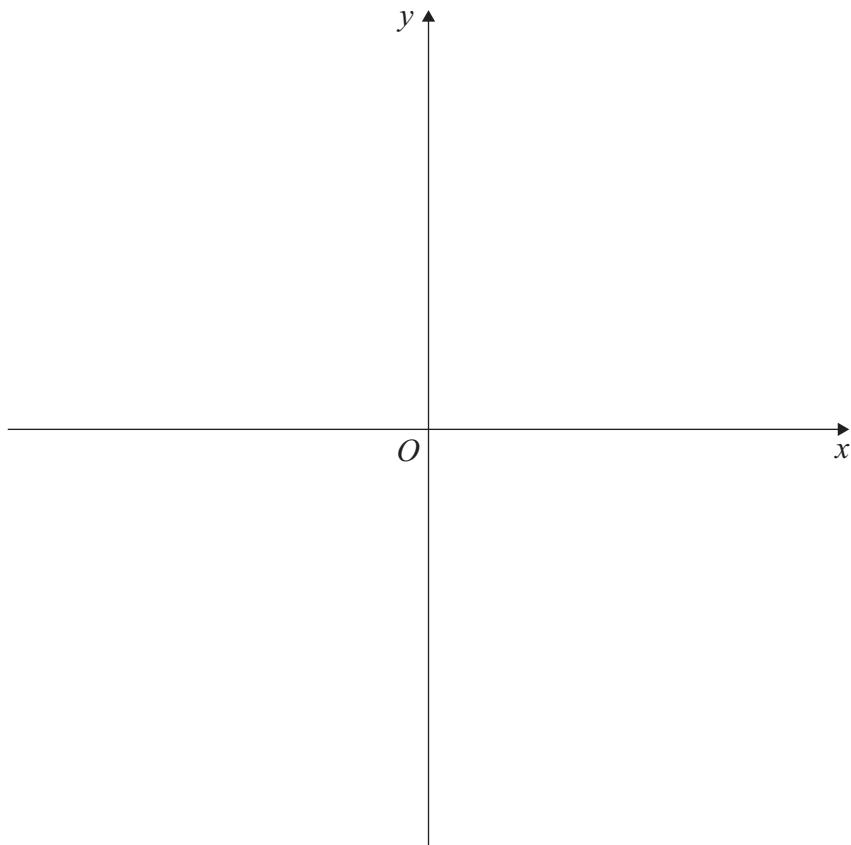
**16** The curve  $C$  has the polar equation

$$r = \frac{2}{\sqrt{\cos^2 \theta + 4 \sin^2 \theta}} \quad -\pi < \theta \leq \pi$$

16 (a) Show that the Cartesian equation of C can be written as

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

where  $a$  and  $b$  are positive integers to be determined.


[4 marks]



**16 (b)** Hence sketch the graph of C on the axes below.

Indicate the value of any intercepts of the curve with the axes.

**[2 marks]**



**Turn over for the next question**

**Turn over ►**

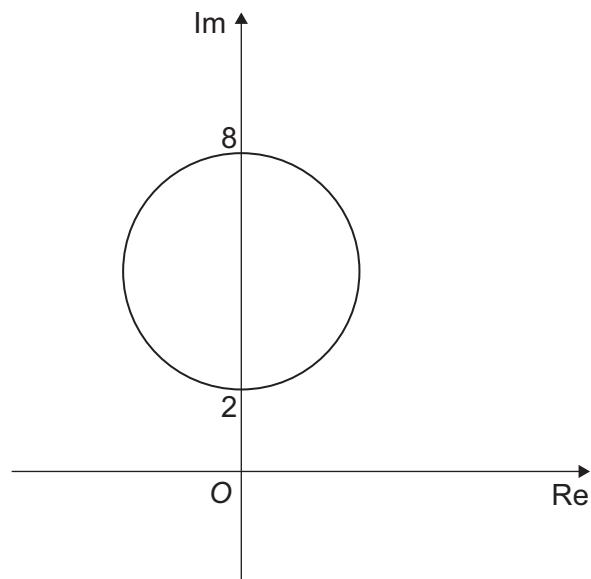


2 3

G/Jun24/7366/1

*Do not write  
outside the  
box*

17 The circle C represents the locus of points satisfying the equation


$$|z - ai| = b$$

where  $a$  and  $b$  are real constants.

The circle C intersects the imaginary axis at  $2i$  and  $8i$

The circle C is shown on the Argand diagram in **Figure 2**

**Figure 2**



17 (a) (i) Write down the value of  $a$

[1 mark]

---



---



---

17 (a) (ii) Write down the value of  $b$

[1 mark]

---

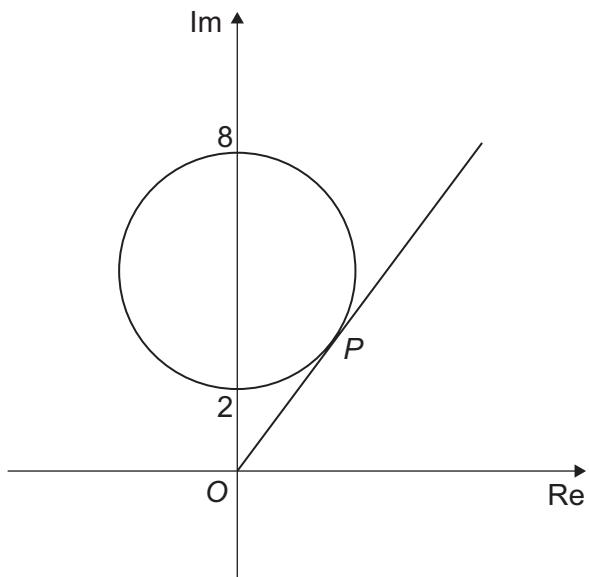


---



---




17 (b) The half-line  $L$  represents the locus of points satisfying the equation

$$\arg(z) = \tan^{-1}(k)$$

where  $k$  is a positive constant.

The point  $P$  is the **only** point which lies on both  $C$  and  $L$ , as shown in **Figure 3**

**Figure 3**



17 (b) (i) The point  $O$  represents the number  $0 + 0i$

Calculate the length  $OP$

**[2 marks]**

---



---



---



---



---



---



---



---



---



---



---



---



---



---



---



---



---



---



---



---

**Turn over ►**



2 5

G/Jun24/7366/1

17 (b) (ii) Calculate the exact value of  $k$

[2 marks]

17 (b) (iii) Find the complex number represented by point  $P$

Give your answer in the form  $x + yi$  where  $x$  and  $y$  are real.

[3 marks]



*Do not write outside the box*

**END OF QUESTIONS**



**There are no questions printed on this page**

*Do not write  
outside the  
box*

**DO NOT WRITE ON THIS PAGE  
ANSWER IN THE SPACES PROVIDED**



2 8

G/Jun24/7366/1

| Question number | Additional page, if required.<br>Write the question numbers in the left-hand margin. |
|-----------------|--------------------------------------------------------------------------------------|
|                 |                                                                                      |



| Question<br>number | Additional page, if required.<br>Write the question numbers in the left-hand margin. |
|--------------------|--------------------------------------------------------------------------------------|
|                    |                                                                                      |



| Question number | Additional page, if required.<br>Write the question numbers in the left-hand margin. |
|-----------------|--------------------------------------------------------------------------------------|
|                 |                                                                                      |



| Question<br>number | <p style="text-align: center;"><b>Additional page, if required.</b><br/><b>Write the question numbers in the left-hand margin.</b></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    | <p><b>Copyright information</b></p> <p>For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from <a href="http://www.aqa.org.uk">www.aqa.org.uk</a>.</p> <p>Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.</p> <p>Copyright © 2024 AQA and its licensors. All rights reserved.</p> |



2 4 6 A 7 3 6 6 / 1



3 2

G/Jun24/7366/1