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Answer all the questions

1 Solve the recurrence relation t t t4 3 6 4n n n
n

2 1 #- + =
+ +

, for n 0H , given that t 100 =  and .t 301 =

 [8]

2 e1  and e2  are two distinct eigenvectors of the matrix .
0
6

1
1A =
-

J

L
KK

N

P
OO  Both e1  and e2  are of the form 

.k
1J

L
KK
N

P
OO  The eigenvalue associated with e1  is negative and the eigenvalue associated with e2  is positive.

 (a) Find e1  and e2 . [5]

 (b) In this question you must show detailed reasoning.

  Using reduction to diagonal form, calculate A10 . [3]

 (c) Scalars a and b are such that the vector 
x
yr =
J

L
KK
N

P
OO can be written as .a br e e1 2= +

  (i) Find a and b in terms of x and y. [3]

  (ii) Hence show that .
x y x y
5

3 2
5

2 3
Ar e e1 2=-

-
+

+^ ^h h
 [1]

 (d) Use the Cayley-Hamilton theorem to determine the values of p and q such that ,p qA A I1 = +-  
where I is the 2 2#  identity matrix. [3]

3 (a)  Tables T1 to T5 are composition tables for a given set, S, under a binary operation . In each 
table, different letters represent different elements. For each of tables T1 to T5, determine 
whether or not S is a group under , briefly explaining your answer in each case. [7]

T1 { , , , , }a b c d eS = T2 { , , , }a b c dS =

a b c d e a b c d

a a b c d e a a d b c

b b c d f a b d b c a

c c d f a b c b c a d

d d f a b c d c a d b

e e a b c d

T3 { , , }a b cS = T4 { , , , }a b c dS =

a b c a b c d

a c a b a b c a d

b a b c b c a b d

c b c a c a b c d

d d d d d
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T5 { , , , , , }a b c d e fS =

a b c d e f

a a b c d e f

b b a e f c d

c c f a e d b

d d c b a f e

e e d f b a c

f f e d c b a

 (b) The group table for a group (G, *) of order 10 is given below.

* p r r2 r3 r4 s rs r2s r3s r4s

p p r r2 r3 r4 s rs r2s r3s r4s

r r r2 r3 r4 p rs r2s r3s r4s s

r2 r2 r3 r4 p r r2s r3s r4s s rs

r3 r3 r4 p r r2 r3s r4s s rs r2s

r4 r4 p r r2 r3 r4s s rs r2s r3s

s s r4s r3s r2s rs p r4 r3 r2 r

rs rs s r4s r3s r2s r p r4 r3 r2

r2s r2s rs s r4s r3s r2 r p r4 r3

r3s r3s r2s rs s r4s r3 r2 r p r4

r4s r4s r3s r2s rs s r4 r3 r2 r p

  (i) State, with justification, whether (G, *) is abelian. [1]

  (ii) Find the order of element r, justifying your answer. [2]

  (iii) Determine whether or not there are any non-trivial cyclic subgroups of G which are not of 
prime order, justifying your answer. [2]

  (iv) Find all the proper non-trivial subgroups of G. [1]

  (v) Hence determine whether G contains any subgroups which are isomorphic to each other, 
justifying your answer. [2]
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4 A surface S is defined by , , .x y z z 0g e x y2 2

= - =- +^ ^h h  P is a point on S with x a=  and y b,=  
where neither a nor b is equal to 0. The tangent plane to S at P intersects the z-axis at A. The normal 
to S at P is denoted by L.

 (a) Using gd , show that L intersects the z-axis. [5]

 (b) (i) Given that L passes through the origin, show that .lnOA
2
2 1

=
+  [8]

  (ii)  Given instead that P approaches the point (0, 0, 1), show that the z-intercept of L 
approaches a specific point whose coordinates should be found. [1]

5 The sequence hn  is defined by the following recurrence relation:

, .h h n h2
1

n n1 1 2
1= +

+
=

+

 (a) By writing h3  as the sum of three fractions and noting that ,3
1

4
12  show that .h 23 2

1
#2  [2]

 (b) By considering h7  in the form ,2
1

3
1

4
1

5
1

6
1

7
1

8
1+ + + + + +a a ak k k  show that .h 37 2

1
#2   [1]

 (c) State the inequality for h15  which corresponds to the inequality for h7  in part (b). [1]

 (d) Find an integer n such that .h 10n 2  [2]

 (e) Determine, with justification, .lim hn n"3
  [2]
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