Please check the examination details below before entering your candidate information		
Candidate surname		Other names
Pearson Edexcel Level 3 GCE	Centre Numbe	r Candidate Number
Friday 14 June 2019		
Afternoon	Paper	Reference 9MA0-32
Mathematics Advanced Paper 32: Mechanics		
You must have: Mathematical Formulae and Statistical Tables, calculator		

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams / sketches / graphs it must be dark (HB or B).
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 5 questions in this question paper. The total mark for this paper is 50.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

P63359A © Pearson Education Ltd.

Answer ALL questions. Write your answers in the spaces provided.

1. [*In this question position vectors are given relative to a fixed origin O*]

At time *t* seconds, where $t \ge 0$, a particle, *P*, moves so that its velocity **v** m s⁻¹ is given by

$$\mathbf{v} = 6t\mathbf{i} - 5t^{\frac{3}{2}}\mathbf{j}$$

When t = 0, the position vector of *P* is $(-20\mathbf{i} + 20\mathbf{j})$ m.

- (a) Find the acceleration of P when t = 4
- (b) Find the position vector of P when t = 4

(3)

(3)

(Total for Question 1 is 6 marks)

2. A particle, *P*, moves with constant acceleration $(2\mathbf{i} - 3\mathbf{j}) \text{ m s}^{-2}$

At time t = 0, the particle is at the point A and is moving with velocity $(-\mathbf{i} + 4\mathbf{j}) \text{ m s}^{-1}$

At time t = T seconds, *P* is moving in the direction of vector $(3\mathbf{i} - 4\mathbf{j})$

At time t = 4 seconds, *P* is at the point *B*.

(*b*) Find the distance *AB*.

(4)

(4)

(Total for Question 2 is 8 marks)

Figure 1

Two blocks, A and B, of masses 2m and 3m respectively, are attached to the ends of a light string.

Initially *A* is held at rest on a fixed rough plane.

The plane is inclined at angle a to the horizontal ground, where $\tan \alpha = \frac{5}{12}$ The string passes over a small smooth pulley, *P*, fixed at the top of the plane.

The part of the string from A to P is parallel to a line of greatest slope of the plane. Block B hangs freely below P, as shown in Figure 1.

The coefficient of friction between A and the plane is $\frac{2}{3}$

The blocks are released from rest with the string taut and A moves up the plane.

The tension in the string immediately after the blocks are released is *T*.

The blocks are modelled as particles and the string is modelled as being inextensible.

(a) Show that
$$T = \frac{12mg}{5}$$

(8)

After *B* reaches the ground, *A* continues to move up the plane until it comes to rest before reaching *P*.

- (b) Determine whether A will remain at rest, carefully justifying your answer.
- (2)
- (c) Suggest two refinements to the model that would make it more realistic.

(2)

(Total for Question 3 is 12 marks)

Figure 2

A ramp, AB, of length 8 m and mass 20 kg, rests in equilibrium with the end A on rough horizontal ground.

The ramp rests on a smooth solid cylindrical drum which is partly under the ground. The drum is fixed with its axis at the same horizontal level as *A*.

The point of contact between the ramp and the drum is C, where AC = 5 m, as shown in Figure 2.

The ramp is resting in a vertical plane which is perpendicular to the axis of the drum,

at an angle θ to the horizontal, where $\tan \theta = \frac{7}{24}$

The ramp is modelled as a uniform rod.

- (a) Explain why the reaction from the drum on the ramp at point C acts in a direction which is perpendicular to the ramp.
- (1)
- (b) Find the magnitude of the resultant force acting on the ramp at A.

(9)

The ramp is still in equilibrium in the position shown in Figure 2 but the ramp is not now modelled as being uniform.

Given that the centre of mass of the ramp is assumed to be closer to A than to B,

(c) state how this would affect the magnitude of the normal reaction between the ramp and the drum at C.

(1)

(Total for Question 4 is 11 marks)

Figure 3

The points *A* and *B* lie 50 m apart on horizontal ground.

At time t = 0 two small balls, P and Q, are projected in the vertical plane containing AB.

Ball *P* is projected from *A* with speed 20 m s⁻¹ at 30° to *AB*.

Ball Q is projected from B with speed $u \text{ m s}^{-1}$ at angle θ to BA, as shown in Figure 3.

At time t = 2 seconds, P and Q collide.

Until they collide, the balls are modelled as particles moving freely under gravity.

- (a) Find the velocity of P at the instant before it collides with Q.
- (b) Find
 - (i) the size of angle θ ,
 - (ii) the value of *u*.
- (c) State one limitation of the model, other than air resistance, that could affect the accuracy of your answers.

(1)

(6)

(6)

(Total for Question 5 is 13 marks)

TOTAL FOR MECHANICS IS 50 MARKS