

# GCE Edexcel GCE Core Mathematics C1 (6663)

January 2006

advancing learning, changing lives

Mark Scheme (Results)

# January 2006 6663 Core Mathematics C1 Mark Scheme

| Question<br>number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marks              |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 1.                 | $x(x^2 - 4x + 3)$ Factor of x. (Allow $(x - 0)$ ) $= x(x - 3)(x - 1)$ Factorise 3 term quadratic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1<br>M1 A1<br>(3) |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total 3 marks      |
|                    | Alternative:<br>$(x^2 - 3x)(x - 1)$ or $(x^2 - x)(x - 3)$ scores the second M1 (allow $\pm$ for each sign),<br>then $x(x - 3)(x - 1)$ scores the first M1, and A1 if correct.<br>Alternative:<br>Finding factor $(x - 1)$ or $(x - 3)$ by the factor theorem scores the second M1,<br>then completing, using factor $x$ , scores the first M1, and A1 if correct.<br>Factors "split": e.g. $x(x^2 - 4x + 3) \Rightarrow (x - 3)(x - 1)$ . Allow full marks.<br>Factor $x$ not seen: e.g. Dividing by $x \Rightarrow (x - 3)(x - 1)$ . M0 M1 A0.<br>If an equation is solved, i.s.w. |                    |

| Question<br>number | Scheme                                                                      | Marks         |
|--------------------|-----------------------------------------------------------------------------|---------------|
| 2.                 | (a) $u_2 = (-2)^2 = 4$                                                      | B1            |
|                    | (a) $u_2 = (-2)^2 = 4$<br>$u_3 = 1, u_4 = 4$ For $u_3$ , ft $(u_2 - 3)^2$   | B1ft, B1      |
|                    |                                                                             | (3)           |
|                    | (b) $u_{20} = 4$                                                            | B1ft          |
|                    |                                                                             | (1)           |
|                    |                                                                             | Total 4 marks |
|                    | (b) ft only if sequence is "oscillating".                                   |               |
|                    | Do not give marks if answers have clearly been obtained from wrong working, |               |
|                    | e.g. $u_2 = (3-3)^2 = 0$                                                    |               |
|                    | $u_3 = (4-3)^2 = 1$                                                         |               |
|                    | $u_4 = (5-3)^2 = 4$                                                         |               |
|                    |                                                                             |               |
|                    |                                                                             |               |
|                    |                                                                             |               |
|                    |                                                                             |               |
|                    |                                                                             |               |
|                    |                                                                             |               |
|                    |                                                                             |               |
|                    |                                                                             |               |
|                    |                                                                             |               |
|                    |                                                                             |               |
|                    |                                                                             |               |
|                    |                                                                             |               |

| $y = 5 - (2 \times 3) = -1$ (or equivalent verification) (*)<br>Gradient of <i>L</i> is $\frac{1}{2}$<br>$y - (-1) = \frac{1}{2}(x - 3)$ (ft from a <u>changed</u> gradient)<br>x - 2y - 5 = 0 (or equiv. with integer coefficients)<br>$y - (-1) = -2(x - 3) \Rightarrow y = 5 - 2x$ is fine for B1.                                                                                                                                                                                                                                                                                                                                     | B1 (1)<br>B1 M1 A1ft<br>A1 (4)<br>Total 5 marks                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $y - (-1) = \frac{1}{2}(x - 3)$ (ft from a <u>changed gradient</u> )<br>x - 2y - 5 = 0 (or equiv. with integer coefficients)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1<br>M1 A1ft<br>A1<br>(4)                                                                                                                                                                                                                                                                                                                                                                                  |
| x - 2y - 5 = 0 (or equiv. with integer coefficients)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1 (4)                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (4)                                                                                                                                                                                                                                                                                                                                                                                                         |
| $y - (-1) = -2(x - 3) \Rightarrow y = 5 - 2x$ is fine for B1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                             |
| $y - (-1) = -2(x - 3) \Rightarrow y = 5 - 2x$ is fine for B1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total 5 marks                                                                                                                                                                                                                                                                                                                                                                                               |
| $y - (-1) = -2(x - 3) \implies y = 5 - 2x$ is fine for B1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                             |
| Just a table of values including $x = 3$ , $y = -1$ is insufficient.<br>M1: eqn of a line through $(3, -1)$ , with any numerical gradient (except 0 or $\infty$ ).<br>For the M1 A1ft, the equation may be in any form, e.g. $\frac{y - (-1)}{x - 3} = \frac{1}{2}$ .<br>Alternatively, the M1 may be scored by using $y = mx + c$ with a numerical gradient and substituting $(3, -1)$ to find the value of <i>c</i> , with A1ft if the value of <i>c</i> follows through correctly from a changed gradient.<br>Allow $x - 2y = 5$ or equiv., but must be integer coefficients.<br>The "= 0" can be implied if correct working precedes. |                                                                                                                                                                                                                                                                                                                                                                                                             |
| F<br>A<br>g<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | For the M1 A1ft, the equation may be in any form, e.g. $\frac{y-(-1)}{x-3} = \frac{1}{2}$ .<br>Alternatively, the M1 may be scored by using $y = mx + c$ with a numerical gradient and substituting (3, -1) to find the value of <i>c</i> , with A1ft if the value of <i>c</i> follows through correctly from a <u>changed</u> gradient.<br>Allow $x - 2y = 5$ or equiv., but must be integer coefficients. |

| Question<br>number | Scheme                                                                                                                                                                                                                | Marks         |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 4.                 | (a) $\frac{dy}{dx} = 4x + 18x^{-4}$ M1: $x^2 \to x \text{ or } x^{-3} \to x^{-4}$                                                                                                                                     | M1 A1         |
|                    |                                                                                                                                                                                                                       | (2)           |
|                    | (b) $\frac{2x^3}{3} - \frac{6x^{-2}}{-2} + C$ M1: $x^2 \to x^3$ or $x^{-3} \to x^{-2}$ or $+C$                                                                                                                        | M1 A1 A1      |
|                    |                                                                                                                                                                                                                       | (3)           |
|                    | $\left(=\frac{2x^3}{3}+3x^{-2}+C\right)$ First A1: $\frac{2x^3}{3}+C$                                                                                                                                                 |               |
|                    | Second A1: $-\frac{6x^{-2}}{-2}$                                                                                                                                                                                      |               |
|                    |                                                                                                                                                                                                                       | Total 5 marks |
|                    | In both parts, accept any correct version, simplified or not.<br>Accept 4x <sup>1</sup> for 4x.<br><u>+ C in part (a) instead of part (b):</u><br>Penalise only once, so if otherwise correct scores M1 A0, M1 A1 A1. |               |

| Question<br>number | Scheme                                                                                              | Marks         |
|--------------------|-----------------------------------------------------------------------------------------------------|---------------|
| 5.                 | (a) $3\sqrt{5}$ (or $a = 3$ )                                                                       | B1            |
|                    |                                                                                                     | (1)           |
|                    | (b) $\frac{2(3+\sqrt{5})}{(3-\sqrt{5})} \times \frac{(3+\sqrt{5})}{(3+\sqrt{5})}$                   | M1            |
|                    | $(3 - \sqrt{5})(3 + \sqrt{5}) = 9 - 5$ (= 4) (Used as or intended as denominator)                   | B1            |
|                    | $(3+\sqrt{5})(p \pm q\sqrt{5}) = \dots 4 \text{ terms } (p \neq 0, q \neq 0)$ (Independent)         | M1            |
|                    | or $(6+2\sqrt{5})(p \pm q\sqrt{5}) = \dots 4$ terms $(p \neq 0, q \neq 0)$                          |               |
|                    | [Correct version: $(3 + \sqrt{5})(3 + \sqrt{5}) = 9 + 3\sqrt{5} + 3\sqrt{5} + 5$ , or double this.] |               |
|                    | $\frac{2(14+6\sqrt{5})}{4} = 7+3\sqrt{5}$ 1 <sup>st</sup> A1: b = 7, 2 <sup>nd</sup> A1: c = 3      | A1 A1         |
|                    |                                                                                                     | (5)           |
|                    |                                                                                                     | Total 6 marks |
|                    | (b) $2^{nd}$ M mark for attempting $(3 + \sqrt{5})(p + q\sqrt{5})$ is generous. Condone errors.     |               |

| Question<br>number | Scheme                                                                                  | Marks           |
|--------------------|-----------------------------------------------------------------------------------------|-----------------|
| 6.                 | (a) (See below)<br>Clearly through origin (or (0, 0) seen)                              | M1<br>A1        |
|                    | 3 a labelled (or (3, 0) seen)                                                           | A1 (3)          |
|                    | (b) $6 \int $ Stretch parallel to y-axis                                                | M1              |
|                    | 1  and  4  labelled (or (1, 0) and (4, 0) seen) $6  labelled (or (0, 6) seen)$          | A1<br>A1<br>(3) |
|                    | (c) Stretch parallel to x-axis<br>2 and 8 labelled (or (2, 0) and (8, 0) seen)          | M1<br>A1        |
|                    | 2 $8$ $3$ labelled (or (0, 3) seen)                                                     | A1 (3)          |
|                    |                                                                                         | Total 9 marks   |
|                    | (a) M1:                                                                                 |                 |
|                    | (b) M1:<br>with at least two of: (1, 0) unchanged<br>(4, 0) unchanged<br>(0, 3) changed |                 |
|                    | (c) M1: with at least two of: (1, 0) changed<br>(4, 0) changed<br>(0, 3) unchanged      |                 |
|                    | Beware: Candidates may sometimes re-label the parts of their solution.                  |                 |

| Question<br>number | Scheme                                                                                                                                           |             |            | S     |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|-------|
| 7.                 | (a) $500 + (500 + 200) = 1200$ or $S_2 = \frac{1}{2} 2\{1000 + 200\} = 1200$                                                                     | B1          | (1)        |       |
|                    | (b) Using $a = 500$ , $d = 200$ with $n = 7$ , 8 or 9 $a + (n-1)d$ or "listing"                                                                  | M1          |            |       |
|                    | $500 + (7 \times 200) = (\pounds)1900$                                                                                                           | A1          | (2)        |       |
|                    | (c) Using $\frac{1}{2}n\{2a+(n-1)d\}$ or $\frac{1}{2}n\{a+l\}$ , or listing and "summing" terms                                                  | M1          |            |       |
|                    | $S_8 = \frac{1}{2}8\{2 \times 500 + 7 \times 200\}$ or $S_8 = \frac{1}{2}8\{500 + 1900\}$ , or all terms in list c                               | correct     | A1         |       |
|                    | $=(\pounds) 9600$                                                                                                                                |             | A1         | (3)   |
|                    | (d) $\frac{1}{2}n\{2 \times 500 + (n-1) \times 200\} = 32000$ M1: General $S_n$ , equated to 32                                                  | 2000        | M1 A1      |       |
|                    | $n^2 + 4n - 320 = 0$ (or equiv.) M1: Simplify to 3 term quadra                                                                                   | ntic        | M1 A1      |       |
|                    | (n+20)(n-16) = 0 $n =$ M1: Attempt to solve 3 t.q.                                                                                               |             | M1         |       |
|                    | n = 16, Age is 26                                                                                                                                | A1cso,A1cso |            |       |
|                    |                                                                                                                                                  |             |            | (7)   |
|                    |                                                                                                                                                  |             | Total 13 n | narks |
|                    | (b) Correct answer with no working: Allow both marks.                                                                                            |             |            |       |
|                    | <ul> <li>(c) <u>Some</u> working must be seen to score marks:<br/>Minimum working: 500 + 700 + 900 +(+ 1900) = scores M1 (A1)</li> </ul>         | ).          |            |       |
|                    | (d) Allow $\geq$ or > throughout , apart from "Age 26".                                                                                          |             |            |       |
|                    | A common <u>misread</u> here is 3200. This gives $n = 4$ and age 14, and can s M1 A0 M1 A0 M1 A1 A1 with the usual misread rule.                 | score       |            |       |
|                    | <u>Alternative:</u> (Listing sums)<br>(500, 1200, 2100, 3200, 4500, 6000, 7700, 9600,) 11700, 14000, 16500<br>19200, 22100, 25200, 28500, 32000. | ),          |            |       |
|                    | I                                                                                                                                                | M3<br>A2    |            |       |
|                    | n = 16 (perhaps implied by age)                                                                                                                  | A1cso       |            |       |
|                    | Age 26<br>If there is a mistake in the list, e.g. 16 <sup>th</sup> sum = 32100, possible marks are<br>M3 A0 A0 A0                                | A1cso<br>e: |            |       |
|                    | Alternative: (Trial and improvement)                                                                                                             |             |            |       |
|                    | Use of $S_n$ formula with $n = 16$ (and perhaps other values)                                                                                    |             |            |       |
|                    |                                                                                                                                                  | A3<br>A1    |            |       |

| Question<br>number | Scheme                                                                                                                                                                                                                                                  | Marks             |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 8.                 | $\frac{5x^2 + 2}{x^{\frac{1}{2}}} = 5x^{\frac{3}{2}} + 2x^{-\frac{1}{2}}$ M1: One term correct.                                                                                                                                                         | M1 A1             |
|                    | A1: Both terms correct, and no extra terms.                                                                                                                                                                                                             |                   |
|                    | $f(x) = 3x + \frac{5x^{\frac{5}{2}}}{\left(\frac{5}{2}\right)} + \frac{2x^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} (+C) \qquad (+C \text{ not required here})$                                                                                          | M1 A1ft           |
|                    | 6 = 3 + 2 + 4 + C Use of $x = 1$ and $y = 6$ to form eqn. in C                                                                                                                                                                                          | M1                |
|                    | $C = -3$ $3x + 2x^{\frac{5}{2}} + 4x^{\frac{1}{2}} - 3$ (simplified version required)                                                                                                                                                                   | Alcso             |
|                    | $3x + 2x^{\overline{2}} + 4x^{\overline{2}} - 3$ (simplified version required)                                                                                                                                                                          | A1 (ft <i>C</i> ) |
|                    | [or: $3x + 2\sqrt{x^5} + 4\sqrt{x} - 3$ or equiv.]                                                                                                                                                                                                      | (7)               |
|                    |                                                                                                                                                                                                                                                         | Total 7 marks     |
|                    | <ul> <li>For the integration:</li> <li>M1 requires evidence from just one term (e.g. 3 → 3x), but not just "+C".</li> <li>A1ft requires correct integration of at least 3 terms, with at least one of these terms having a fractional power.</li> </ul> |                   |
|                    | For the final A1, follow through on <i>C</i> only.                                                                                                                                                                                                      |                   |
|                    |                                                                                                                                                                                                                                                         |                   |
|                    |                                                                                                                                                                                                                                                         |                   |
|                    |                                                                                                                                                                                                                                                         |                   |
|                    |                                                                                                                                                                                                                                                         |                   |
|                    |                                                                                                                                                                                                                                                         |                   |
|                    |                                                                                                                                                                                                                                                         |                   |
|                    |                                                                                                                                                                                                                                                         |                   |

| Question<br>number |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Scheme                                                               |                            |         | Marks      |      |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------|---------|------------|------|
| 9.                 | (a) $-2(P)$ , $2($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>Q</i> )                                                           | (± 2 scores B1 B1)         |         | B1, B1     | (2)  |
|                    | (b) $y = x^3 - x^2 - 4x + 4$ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (May be seen earlier)                                                | Multiply out, giving 4     | terms   | M1         |      |
|                    | $\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2x - 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |                            | (*)     | M1 A1cso   |      |
|                    | (c) At $x = -1$ : $\frac{dy}{dx} = 3(-1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $^{2} - 2(-1) - 4 = 1$                                               |                            |         |            | (3)  |
|                    | Eqn. of tangent: <i>y</i> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -6 = 1(x - (-1)),                                                    | y = x + 7                  | (*)     | M1 A1cso   |      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                            |         |            | (2)  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | quating to "gradient of tan                                          |                            |         | M1         |      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (3x-5)(x+1) = 0                                                      | $x = \dots$                |         | M1         |      |
|                    | $x = \frac{5}{3}$ or equiv.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |                            |         | A1         |      |
|                    | $y = \left(\frac{5}{3} - 1\right)\left(\frac{25}{9} - 4\right),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $=\frac{2}{3} \times \left(-\frac{11}{9}\right) = -\frac{22}{27}$ or | equiv.                     |         | M1, A1     |      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                            |         |            | (5)  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                            |         | Total 12 m | arks |
|                    | (b) <u>Alternative:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 1 . 1 . 1                                                          |                            |         |            |      |
|                    | Attempt to differential $\frac{dy}{dx} = \left\{ (x^2 - 4) \times 1 \right\} + \left\{ \frac{dy}{dx} = \left\{ (x^2 - 4) \times 1 \right\} + \left\{ \frac{dy}{dx} = \frac{dy}{dx} + $ | the by product rule scores t $\{(x-1) \times 2x\}$                   | ne <u>secona</u> M1:       |         |            |      |
|                    | uл                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | scores the <u>first</u> M1, with A                                   | A1 if correct (cso).       |         |            |      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nod: Evaluate $\frac{dy}{dx}$ and use                                |                            | (-1,6), |            |      |
|                    | Alternative:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      | ent need not be 1 for the  |         |            |      |
|                    | (d) $2^{nd}$ and $3^{rd}$ M marks a $k$ is a constant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | re dependent on starting w                                           | with $3x^2 - 2x - 4 = k$ , | where   |            |      |

| Question<br>number | Scheme                                                                                                                                                                       | Mark     | ZS    |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| 10.                | (a) $x^2 + 2x + 3 = (x+1)^2$ , +2 (a = 1, b = 2)                                                                                                                             | B1, B1   | (2)   |
|                    | (b) "U"-shaped parabola                                                                                                                                                      | M1       |       |
|                    | Vertex in correct quadrant (ft from (– <i>a</i> , <i>b</i> )                                                                                                                 | A1ft     |       |
|                    | (0, 3) (or 3 on y-axis)                                                                                                                                                      | B1       | (3)   |
|                    | (c) $b^2 - 4ac = 4 - 12 = -8$                                                                                                                                                | B1       |       |
|                    | Negative, so curve does not cross x-axis                                                                                                                                     | B1       | (2)   |
|                    | (d) $b^2 - 4ac = k^2 - 12$ (May be within the quadratic formula)                                                                                                             | M1       |       |
|                    | $k^2 - 12 < 0$ (Correct inequality expression in any form)                                                                                                                   | A1       |       |
|                    | $-\sqrt{12} < k < \sqrt{12}$ (or $-2\sqrt{3} < k < 2\sqrt{3}$ )                                                                                                              | M1 A1    | (4)   |
|                    |                                                                                                                                                                              | Total 11 | marks |
|                    | <ul><li>(b) The B mark can be scored independently of the sketch.</li><li>(3, 0) shown on the <i>y</i>-axis scores the B1, but if not shown on the axis, it is B0.</li></ul> |          |       |
|                    | (c) " no real roots" is insufficient for the $2^{nd}$ B mark.<br>" curve does not touch <i>x</i> -axis" is insufficient for the $2^{nd}$ B mark.                             |          |       |
|                    | (d) $2^{nd}$ M1: correct solution method for <u>their</u> quadratic inequality,                                                                                              |          |       |
|                    | e.g. $k^2 - 12 < 0$ gives k between the 2 critical values $\alpha < k < \beta$ ,<br>whereas $k^2 - 12 > 0$ gives $k < \alpha$ , $k > \beta$ .                                |          |       |
|                    | " $k > -\sqrt{12}$ and $k < \sqrt{12}$ " scores the final M1 A1, but                                                                                                         |          |       |
|                    | " $k > -\sqrt{12}$ or $k < \sqrt{12}$ " scores M1 A0,                                                                                                                        |          |       |
|                    | " $k > -\sqrt{12}$ , $k < \sqrt{12}$ " scores M1 A0.                                                                                                                         |          |       |
|                    | N.B. $k < \pm \sqrt{12}$ does not score the 2 <sup>nd</sup> M mark.                                                                                                          |          |       |
|                    | $k < \sqrt{12}$ does not score the 2 <sup>nd</sup> M mark.                                                                                                                   |          |       |
|                    | $\leq$ instead of <: Penalise only once, on first occurrence.                                                                                                                |          |       |
|                    |                                                                                                                                                                              |          |       |
|                    |                                                                                                                                                                              |          |       |

# **GENERAL PRINCIPLES FOR C1 MARKING**

# Method mark for solving 3 term quadratic:

## 1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$ , where |pq| = |c|, leading to x = ... $(ax^{2} + bx + c) = (mx + p)(nx + q)$ , where |pq| = |c| and |mn| = |a|, leading to x = ...

## 2. Formula

Attempt to use <u>correct</u> formula (with values for *a*, *b* and *c*).

#### 3. Completing the square

Solving  $x^2 + bx + c = 0$ :  $(x \pm p)^2 \pm q \pm c$ ,  $p \neq 0$ ,  $q \neq 0$ , leading to  $x = \dots$ 

#### Method marks for differentiation and integration:

# 1. Differentiation

Power of at least one term decreased by 1. ( $x^n \rightarrow x^{n-1}$ )

# 2. Integration

Power of at least one term increased by 1. ( $x^n \rightarrow x^{n+1}$ )

#### Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but will be lost if there is any mistake in the working.

#### Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

#### Answers without working

The rubric says that these <u>may</u> gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

#### **Misreads**

(See the next sheet for a simple example).

A misread must be consistent for the whole question to be interpreted as such.

These are not common. In clear cases, please deduct the <u>first 2 A</u> (or B) marks which <u>would have been lost by</u> <u>following the scheme</u>. (Note that 2 marks is the <u>maximum</u> misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).

Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.

# **MISREADS**

Question 8.  $5x^2$  misread as  $5x^3$ 

8. 
$$\frac{5x^3+2}{x^{\frac{1}{2}}} = 5x^{\frac{5}{2}} + 2x^{-\frac{1}{2}}$$
 M1 A0

$$f(x) = 3x + \frac{5x^{\frac{7}{2}}}{\left(\frac{7}{2}\right)} + \frac{2x^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} (+C)$$
 M1 A1ft

$$6 = 3 + \frac{10}{7} + 4 + C$$
 M1

$$C = -\frac{17}{7},$$
  $f(x) = 3x + \frac{10}{7}x^{\frac{7}{2}} + 4x^{\frac{1}{2}} - \frac{17}{7}$  A0, A1