

Mark Scheme (Results) January 2010

GCE

Core Mathematics C2 (6664)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners. For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2010 Publications Code US022707 All the material in this publication is copyright © Edexcel Ltd 2010

January 2010 Core Mathematics C2 6664 Mark Scheme

Question Number	Scheme	Marks
Q1	$\left[(3-x)^{6} = \right] 3^{6} + 3^{5} \times 6 \times (-x) + 3^{4} \times \begin{pmatrix} 6 \\ 2 \end{pmatrix} \times (-x)^{2}$	M1
	$=729, -1458x, +1215x^{2}$	B1,A1, A1 [4]
Notes	M1 for <u>either</u> the <i>x</i> term <u>or</u> the x^2 term. Requires <u>correct</u> binomial coefficient in any form with the correct power of x – condone lack of negative sign and wrong power of 3. This mark may be given if no working is shown, but one of the terms including <i>x</i> is correct. Allow $\frac{6}{1}$, or $\frac{6}{2}$ (must have a power of 3, even if only power 1) First term must be 729 for B1 , (writing just 3^6 is B0) can isw if numbers added to this constant later. Can allow 729(1 Term must be simplified to $-1458x$ for A1cao . The <i>x</i> is required for this mark. Final A1 is c.a.o and needs to be $+1215x^2$ (can follow omission of negative sign in working) Descending powers of <i>x</i> would be $x^6 + 3 \times 6 \times (-x)^5 + 3^2 \times \binom{6}{4} \times (-x)^4 +$ i.e. $x^6 - 18x^5 + 135x^4 +$ This is M1B1A0A0 if completely "correct" or M1 B0A0A0 for <u>correct</u> binomial coefficient in any form with the correct power of <i>x</i> as before	
Alternative	NB Alternative method: $(3-x)^6 = 3^6(1+6\times(-\frac{x}{3})+\binom{6}{2}\times(-\frac{x}{3})^2+)$ is M1B0A0A0 - answers must be simplified to 729, -1458x, +1215x ² for full marks (awarded as before) The mistake $(3-x)^6 = 3(1-\frac{x}{3})^6 = 3(1+6\times(-\frac{x}{3})+\times\binom{6}{2}\times(-\frac{x}{3})^2+)$ may also be awarded M1B0A0A0 Another mistake $3^6(1-6x+15x^2) = 729$ would be M1B1A0A0	

Ques Num		Scheme	Marks
Q2	(a)	$5\sin x = 1 + 2(1 - \sin^2 x)$	M1
		$2\sin^2 x + 5\sin x - 3 = 0$ (*)	A1cso (2)
	(b)	(2s-1)(s+3) = 0 giving $s =$	M1
		$\left[\sin x = -3 \text{ has no solution}\right]$ so $\sin x = \frac{1}{2}$	A1
		$\therefore x = 30, 150$	B1, B1ft (4) [6]
	(a)		
		M1 for a correct method to change $\cos^2 x$ into $\sin^2 x$ (must use	
		$\cos^2 x = 1 - \sin^2 x$) A1 need 3 term quadratic printed in any order with =0 included	
	(b)	M1 for attempt to solve given quadratic (usual rules for solving quadratics) (can use any variable here, s , y , x , or sin x)	
		A1 requires no incorrect work seen and is for $\sin x = \frac{1}{2}$ or $x = \sin^{-1} \frac{1}{2}$	
		$y = \frac{1}{2}$ is A0 (unless followed by $x = 30$)	
		B1 for 30 (α) not dependent on method	
		2^{nd} B1 for 180 - α provided in required range (otherwise 540 - α) Extra solutions outside required range: Ignore	
		Extra solutions inside required range: Lose final B1	
		<u>Answers in radians</u> : Lose final B1 S.C. Merely writes down two correct answers is M0A0B1B1	
		Or $\sin x = \frac{1}{2}$ \therefore $x = 30, 150$ is M1A1B1B1	
		Just gives one answer : 30 only is M0A0B1B0 or 150 only is M0A0B0B1	
		NB Common error is to factorise wrongly giving $(2\sin x + 1)(\sin x - 3) = 0$	
		$[\sin x = 3 \text{ gives no solution}] \sin x = -\frac{1}{2} \implies x = 210, 330$	
		This earns M1 A0 B0 B1ft	
		Another common error is to factorise correctly $(2\sin x - 1)(\sin x + 3) = 0$ and follow this	
		with $\sin x = \frac{1}{2}$, $\sin x = 3$ then $x = 30^{\circ}, 150^{\circ}$	
		This would be M1 A0 B1 B1	

Question Number	Scheme	Mar	⁻ ks
Q3 (a)	$f\left(\frac{1}{2}\right) = 2 \times \frac{1}{8} + a \times \frac{1}{4} + b \times \frac{1}{2} - 6$	M1	
	$f\left(\frac{1}{2}\right) = -5 \implies \frac{1}{4}a + \frac{1}{2}b = \frac{3}{4} \text{ or } a + 2b = 3$ f(-2) = -16 + 4a - 2b - 6 $f(-2) = 0 \implies 4a - 2b = 22$	A1 M1 A1	
	Eliminating one variable from 2 linear simultaneous equations in <i>a</i> and <i>b</i> a = 5 and $b = -1$	M1 A1	(6)
(b)		M1 M1A1	(3)
	= (x+2)(2x+3)(x-1) NB $(x+2)(x+\frac{3}{2})(2x-2)$ is A0 But $2(x+2)(x+\frac{3}{2})(x-1)$ is A1		[9]
(a) (b)	1 st M1 for attempting $f(\pm \frac{1}{2})$ Treat the omission of the -5 here as a slip and allow the M mark. 1 st A1 for first correct equation in <i>a</i> and <i>b</i> simplified to three non zero terms (needs -5 used) s.c. If it is not simplified to three terms but is correct and is then used correctly with second equation to give correct answers- this mark can be awarded later. 2 nd M1 for attempting $f(\pm 2)$ 2 nd A1 for the second correct equation in <i>a</i> and <i>b</i> . simplified to three terms (needs 0 used) s.c. If it is not simplified to three terms but is correct and is then used correctly with first equation to give correct answers - this mark can be awarded later. 3 rd M1 for an attempt to eliminate one variable from 2 linear simultaneous equations in <i>a</i> and <i>b</i> 3 rd A1 for both <i>a</i> = 5 and <i>b</i> = -1 (Correct answers here imply previous two A marks) 1 st M1 for attempt to divide by (<i>x</i> +2) leading to a 3TQ beginning with correct term usually $2x^2$ 2 nd M1 for attempt to factorize their quadratic provided no remainder A1 is cao and needs all three factors Ignore following work (such as a solution to a quadratic equation).		
(a) (b)	Alternative; M1 for dividing by $(2x-1)$, to get $x^2 + (\frac{a+1}{2})x$ + constant with remainder as a function of <i>a</i> and <i>b</i> , and A1 as before for equations stated in scheme. M1 for dividing by $(x+2)$, to get $2x^2 + (a-4)x$ (No need to see remainder as it is zero and comparison of coefficients may be used) with A1 as before <u>Alternative</u> ; M1 for finding second factor correctly by factor theorem, usually $(x-1)$ M1 for using two known factors to find third factor, usually $(2x\pm 3)$ Then A1 for correct factorisation written as product $(x+2)(2x+3)(x-1)$		

Question Number	Scheme	Marks
Q4 (a)	Either $\frac{\sin(A\hat{C}B)}{5} = \frac{\sin 0.6}{4}$ $\therefore A\hat{C}B = \arcsin(0.7058)$ = [0.7835 or 2.358] Use angles of triangle $A\hat{B}C = \pi - 0.6 - A\hat{C}B$ (But as AC is the longest side so) $A\hat{B}C = 1.76$ (*)(3sf) [Allow 100.7° \rightarrow 1.76] In degrees $0.6 = 34.377^{\circ}$, $A\hat{C}B = 44.9^{\circ}$ or $4^2 = b^2 + 5^2 - 2 \times b \times 5 \cos 0.6$ $\therefore b = \frac{10\cos 0.6 \pm \sqrt{(100\cos^2 0.6 - 36)}}{2}$ = [6.96 or 1.29] Use sine / cosine rule with value for b $\sin B = \frac{\sin 0.6}{4} \times b \text{ or } \cos B = \frac{25 + 16 - b^2}{40}$ (But as AC is the longest side so) $A\hat{B}C = 1.76$ (*)(3sf) [Allow 100.7° \rightarrow 1.76] In degrees $0.6 = 34.377^{\circ}$, $A\hat{C}B = 44.9^{\circ}$	M1 M1 M1, A1 (4)
(b)	$\left[C\hat{B}D = \pi - 1.76 = 1.38\right]$ Sector area = $\frac{1}{2} \times 4^2 \times (\pi - 1.76) = \left[11.0 \sim 11.1\right] \frac{1}{2} \times 4^2 \times 79.3$ is M0	M1 M1
	Area of $\triangle ABC = \frac{1}{2} \times 5 \times 4 \times \sin(1.76) = [9.8]$ or $\frac{1}{2} \times 5 \times 4 \times \sin 101$ Required area = awrt 20.8 or 20.9 or 21.0 or gives 21 (2sf) after correct work.	A1 (3) [7]
(a)	1 st M1 for correct use of sine rule to find <i>ACB</i> or cosine rule to find <i>b</i> (M0 for ABC here or for use of sin x w could be <i>ABC</i>) 2 nd M1 for a correct expression for angle <i>ACB</i> (This mark may be implied by .7835 or by arcsin (.7058)) and n accuracy. In second method this M1 is for correct expression for $b - \text{may}$ be implied by 6.96. [Note 10 cos 0.6 (do not need two answers) 3 rd M1 for a correct method to get angle <i>ABC</i> in method (i) or sin <i>ABC</i> or cos <i>ABC</i> , in method (ii) (If sin <i>B</i> >1, M1A0) A1cso for correct work leading to 1.76 3sf. Do not need to see angle 0.1835 considered and rejected.	needs $ \approx 8.3 $]
(b)	1^{st} M1 for a correct expression for sector area or a value in the range $11.0 - 11.1$ 2^{nd} M1 for a correct expression for the area of the triangle or a value of 9.8 Ignore 0.31 (working in degrees) as subsequent work. A1 for answers which round to 20.8 or 20.9 or 21.0. No need to see units.	
(a)	Special caseIf answer 1.76 is assumed then usual mark is M0 M0 M0 A0. A Fully checked method may M1 M1 M0 A0. A maximum of 2 marks. The mark is either 2 or 0.Either M1 for $A\hat{C}B$ is found to be 0,7816 (angles of triangle) thenM1 for checking $\frac{\sin(A\hat{C}B)}{5} = \frac{\sin 0.6}{4}$ with conclusion giving numerical answersThis gives a maximum mark of 2/4 OR M1 for <i>b</i> is found to be 6.97 (cosine rule)M1 for checking $\frac{\sin(ABC)}{b} = \frac{\sin 0.6}{4}$ with conclusion giving numerical answersThis gives a maximum mark of 2/4 OR M1 for checking $\frac{\sin(ABC)}{b} = \frac{\sin 0.6}{4}$ with conclusion giving numerical answersM1 for checking $\frac{\sin(ABC)}{b} = \frac{\sin 0.6}{4}$ with conclusion giving numerical answersSo the score will be 0 or 2 for part (a). Circular arguments earn 0/4.	be worth

Ques ⁻ Num		Scheme	Mar	ks
Q5	(a)	$\log_x 64 = 2 \implies 64 = x^2$	M1	
		So $x = 8$	A1	(2)
	(b)	$\log_2(11-6x) = \log_2(x-1)^2 + 3$	M1	
		$\log_2\left[\frac{11-6x}{\left(x-1\right)^2}\right] = 3$	M1	
		$\frac{11-6x}{(x-1)^2} = 2^3$	M1	
		$\{11-6x=8(x^2-2x+1)\}$ and so $0=8x^2-10x-3$	A1	
		$0 = (4x+1)(2x-3) \implies x = \dots$	dM1	
		$x = \frac{3}{2}, \left[-\frac{1}{4}\right]$	A1	(6)
				[8]
	(a)	M1 for getting out of logs A1 Do not need to see $x = -8$ appear and get rejected. Ignore $x = -8$ as extra solution. x = 8 with no working is M1 A1		
	(b)	1 st M1 for using the <i>n</i> log <i>x</i> rule 2 nd M1 for using the log <i>x</i> - log <i>y</i> rule or the log <i>x</i> + log <i>y</i> rule as appropriate 3 rd M1 for using 2 to the power– need to see 2 ³ or 8 (May see $3 = \log_2 8$ used) If all three M marks have been earned and logs are still present in equation		
		do not give final M1. So solution stopping at $\log_2 \left[\frac{11-6x}{(x-1)^2} \right] = \log_2 8$ would earn		
		M1M1M0 1^{st} A1 for a correct 3TQ 4^{th} dependent M1 for attempt to solve or factorize their 3TQ to obtain $x =$ (mark depends on three previous M marks) 2^{nd} A1 for 1.5 (ignore -0.25) s.c 1.5 only – no working – is 0 marks		
	(a)	<u>Alternatives</u> Change hase : (i) $\frac{\log_2 64}{100} = 2$ so $\log_2 r = 3$ and $r = 2^3$ is M1 or		
		Change base : (i) $\frac{\log_2 64}{\log_2 x} = 2$, so $\log_2 x = 3$ and $x = 2^3$, is M1 or (ii) $\frac{\log_{10} 64}{\log_2 x} = 2$, $\log_2 x = \frac{1}{2}\log_2 x = -\frac{1}{2}\log_2 x = -1$		
		(ii) $\frac{\log_{10} 64}{\log_{10} x} = 2$, $\log x = \frac{1}{2}\log 64$ so $x = 64^{\frac{1}{2}}$ is M1 then $x = 8$ is A1		
		BUT log $x = 0.903$ so $x = 8$ is M1A0 (loses accuracy mark) (iii) log ₆₄ $x = \frac{1}{2}$ so $x = 64^{\frac{1}{2}}$ is M1 then $x = 8$ is A1		

Question Number	Scheme	Marks
Q6 (a)	$18000 \times (0.8)^3$ = £9216 * [may see $\frac{4}{5}$ or 80% or equivalent].	B1cso (1)
(b)		M1
	$n\log(0.8) < \log\left(\frac{1}{18}\right)$	M1
	$n > \frac{\log\left(\frac{1}{18}\right)}{\log(0.8)} = 12.952$ so $n = 13.$	A1 cso (3)
(C)	$u_5 = 200 \times (1.12)^4$, = £314.70 or £314.71	M1, A1 (2)
(d)	$S_{15} = \frac{200(1.12^{15} - 1)}{1.12 - 1} \text{ or } \frac{200(1 - 1.12^{15})}{1 - 1.12}, = 7455.94 \text{ awrt £7460}$	M1A1, A1 (3) [9]
(a)	B1 NB Answer is printed so need working . May see as above or $\times 0.8$ in three steps giving 14400, 11520, 9216. Do not need to see £ sign but should see 9216.	
(b)	1 st M1 for an attempt to use <i>n</i> th term and 1000. Allow <i>n</i> or $n - 1$ and allow > or = 2^{nd} M1 for use of logs to find <i>n</i> Allow <i>n</i> or $n - 1$ and allow > or = A1 Need $n = 13$ This is an accuracy mark and must follow award of both M marks but should not follow incorrect work using $n - 1$ for example. Condone slips in inequality signs here.	
(c) (d)	A1 cao need one of these answers – answer can imply method here NB 314 7 – A0	
	M1 for use of sum to 15 terms of GP using their <i>a</i> and their <i>r</i> (allow if formula stated correctly and one error in substitution, but must use <i>n</i> not <i>n</i> - 1) $1^{\text{st}} A1$ for a fully correct expression (not evaluated)	
(b)	Alternative Methods	
	Special case $18000 \times (0.8)^n < 1000$ so $n = 13$ as $989.56 < 1000$ is M1M0A0 (not	
	discounted $n = 12$)	
(c)	May see the terms 224, 250.88, 280.99, 314.71 with a small slip for M1 A0, or done accurately for M1A1	
(d)	Adds 15 terms 200 + 224 + 250.88+ + (977.42) M1 Seeing 977 is A1 Obtains answer 7455.94 A1 or awrt £7460 NOT 7450	

Ques Num		Scheme	Mar	ks
Q7	(a)	Puts $y = 0$ and attempts to solve quadratic e.g. $(x-4)(x-1) = 0$ Points are (1,0) and (4, 0)	M1 A1	(2)
	(b)	x = 5 gives $y = 25 - 25 + 4$ and so (5, 4) lies on the curve	B1cso	(1)
	(c)	$\int \left(x^2 - 5x + 4\right) dx = \frac{1}{3}x^3 - \frac{5}{2}x^2 + 4x (+c)$	M1A1	(2)
	(d)	Area of triangle = $\frac{1}{2} \times 4 \times 4 = 8$ or $\int (x-1) dx = \frac{1}{2}x^2 - x$ with limits 1 and 5 to give 8	B1	
		Area under the curve = $\int_{4}^{5} \frac{\frac{1}{3} \times 5^{3} - \frac{5}{2} \times 5^{2} + 4 \times 5}{\frac{1}{3} \times 5^{3} - \frac{5}{2} \times 5^{2} + 4 \times 5} = -\frac{5}{6}$	M1	
		$\frac{1}{3} \times 4^3 - \frac{5}{2} \times 4^2 + 4 \times 4 \left[= -\frac{8}{3} \right]$	M1	
		$\int_{4}^{5} = -\frac{5}{6} - \frac{8}{3} = \frac{11}{6}$ or equivalent (allow 1.83 or 1.8 here)	A1 cao	
		Area of $R = 8 - \frac{11}{6} = 6\frac{1}{6}$ or $\frac{37}{6}$ or 6.16^r (not 6.17)	A1 cao	(5)
		0 0		[10]
	(a)	M1 for attempt to find L and M A1 Accept $x = 1$ and $x = 4$, then isw or accept $L = (1,0)$, $M = (4,0)$ Do not accept $L = 1$, $M = 4$ nor $(0, 1)$, $(0, 4)$ (unless subsequent work) Do not need to distinguish L and M. Answers imply M1A1.		
	(b)	See substitution, working should be shown, need conclusion which could be just $y = 4$ or a tick. Allow $y = 25 - 25 + 4 = 4$ But not $25 - 25 + 4 = 4$. ($y = 4$ may appear at start) Usually $0 = 0$ or $4 = 4$ is B0		
	(c)	M1 for attempt to integrate $x^2 \rightarrow kx^3$, $x \rightarrow kx^2$ or $4 \rightarrow 4x$ A1 for correct integration of all three terms (do not need constant) isw. Mark correct work when seen. So e.g. $\frac{1}{3}x^3 - \frac{5}{2}x^2 + 4x$ is A1 then $2x^3 - 15x^2 + 24x$ would be ignored as subsequent work.		
	(d)	B1 for this triangle only (not triangle <i>LMN</i>) 1^{st} M1 for substituting 5 into their changed function 2^{nd} M1 for substituting 4 into their changed function		
	(d)	Alternative method: $\int_{1}^{5} (x-1) - (x^2 - 5x + 4)dx + \int_{1}^{4} x^2 - 5x + 4dx$ can lead to correct	t answer	
		Constructs $\int_{1}^{5} (x-1) - (x^2 - 5x + 4) dx$ is B1		
		M1 for substituting 5 and 1 and subtracting in first integral M1 for substituting 4 and 1 and subtracting in second integral A1 for answer to first integral i.e. $\frac{32}{3}$ (allow 10.7) and A1 for final answer as before		

(d)	Another alternative
	$\int_{4}^{5} (x-1) - (x^2 - 5x + 4) dx + area of triangle LMP$
	Constructs $\int_{4}^{5} (x-1) - (x^2 - 5x + 4) dx$ is B1
	M1 for substituting 5 and 4 and subtracting in first integral
	M1 for complete method to find area of triangle (4.5)
	A1 for answer to first integral i.e. $\frac{5}{3}$ and A1 for final answer as before.
(d)	Could also use
	$\int_{4}^{5} (4x - 16) - (x^2 - 5x + 4) dx + area of triangle LMN$
	Similar scheme to previous one. Triangle has area 6
	A1 for finding Integral has value $\frac{1}{6}$ and A1 for final answer as before.

Quest Numl		Scheme	Mar	ks
Q8	(a)	N (2, -1)	B1, B1	(2)
	(b)	$r = \sqrt{\frac{169}{4}} = \frac{13}{2} = 6.5$	B1	(2) (1)
	(c)	Complete Method to find x coordinates, $x_2 - x_1 = 12$ and $\frac{x_1 + x_2}{2} = 2$ then solve To obtain $x_1 = -4$, $x_2 = 8$ Complete Method to find y coordinates, using equation of circle or Pythagoras i.e. let d be the distance below N of A then $d^2 = 6.5^2 - 6^2 \implies d = 2.5 \implies y =$ So $y_2 = y_1 = -3.5$	M1 A1ft A M1 A [^]	1ft 1 (5)
	(d)	Let $A\hat{N}B = 2\theta \implies \sin \theta = \frac{6}{"6.5"} \implies \theta = (67.38)$ So angle ANB is 134.8 *	M1 A1	(2)
	(e)	<i>AP</i> is perpendicular to <i>AN</i> so using triangle <i>ANP</i> $\tan \theta = \frac{AP}{"6.5"}$	M1	
		Therefore $AP = 15.6$	A1cao	(2) [12]
	(a) (b)	B1 for 2 (α), B1 for –1 B1 for 6.5 o.e.		[12]
	(c)	1 st M1 for finding x coordinates – may be awarded if either x co-ord is correct A1ft,A1ft are for $\alpha - 6$ and $\alpha + 6$ if x coordinate of N is α 2 nd M1 for a method to find y coordinates – may be given if y co-ordinate is correct		
	(d)	A marks is for -3.5 only. M1 for a full method to find θ or angle <i>ANB</i> (eg sine rule or cosine rule directly or finding another angle and using angles of triangle.) ft their 6.5 from radius or wrong y. ($\cos ANB = \frac{"6.5"^2 + "6.5"^2 - 12^2}{2 \times "6.5" \times "6.5"} = -0.704$) A1 is a printed answer and must be 134.8 – do not accept 134.76.		
	(e)	M1 for a full method to find <i>AP</i> <u>Alternative Methods</u> N.B. May use triangle <i>AXP</i> where <i>X</i> is the mid point of <i>AB</i> . Or may use triangle ABP. From circle theorems may use angle <i>BAP</i> = 67.38 or some variation. Eg $\frac{AP}{\sin 67.4} = \frac{12}{\sin 45.2}$, $AP = \frac{6}{\sin 22.6}$ or $AP = \frac{6}{\cos 67.4}$ are each worth M1		

Question Number	Scheme	Marks
Q9 (a)	$\left[y = 12x^{\frac{1}{2}} - x^{\frac{3}{2}} - 10 \right]$	
	$[y'=] \qquad 6x^{-\frac{1}{2}} - \frac{3}{2}x^{\frac{1}{2}}$	M1 A1
	$\begin{bmatrix} y = 12x^{\frac{1}{2}} - x^{\frac{3}{2}} - 10 \end{bmatrix}$ $\begin{bmatrix} y' = \end{bmatrix} \qquad 6x^{-\frac{1}{2}} - \frac{3}{2}x^{\frac{1}{2}}$ Puts their $\frac{6}{x^{\frac{1}{2}}} - \frac{3}{2}x^{\frac{1}{2}} = 0$	M1
	So $x = -\frac{12}{3} = 4$ (If $x = 0$ appears also as solution then lose A1)	M1, A1
	$x = 4, \Rightarrow y = 12 \times 2 - 4^{\frac{3}{2}} - 10, \text{so } y = 6$ $y'' = -3x^{-\frac{3}{2}} - \frac{3}{4}x^{-\frac{1}{2}}$	dM1,A1 (7)
(b)	$y'' = -3x^{-\frac{3}{2}} - \frac{3}{4}x^{-\frac{1}{2}}$	M1A1 (2)
(c)	[Since $x > 0$] It is a maximum	B1 (1) [10]
(a)	1 st M1 for an attempt to differentiate a fractional power $x^n \to x^{n-1}$ A1 a.e.f – can be unsimplified 2 nd M1 for forming a suitable equation using their $y'=0$ 3 rd M1 for correct processing of fractional powers leading to $x =$ (Can be implied b A1 is for $x = 4$ only. If $x = 0$ also seen and not discarded they lose this mark only. 4 th M1 for substituting their value of x back into y to find y value. Dependent on three marks. Must see evidence of the substitution with attempt at fractional powers to give b but $y = 6$ can imply M1A1	previous M
(b)	M1 for differentiating their y' again A1 should be simplified	
(c)	B1 . Clear conclusion needed and must follow correct y'' It is dependent on previous (Do not need to have found x earlier).	A mark
	(Treat parts (a),(b) and (c) together for award of marks)	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code US022707 January 2010

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH