4751 (C1) Introduction to Advanced Mathematics

Section A

Sect	JUII A				
1	<i>x</i> > 6/4 o.e. isw	2	M1 for $4x > 6$ or for $6/4$ o.e. found or for their final ans ft their $4x > k$ or $kx > 6$	2	
2	(i) (0, 4) and (6, 0)	2	1 each; allow $x = 0$, $y = 4$ etc; condone $x = 6$, $y = 4$ isw but 0 for $(6, 4)$ with no working		
	(ii) −4/6 o.e. or ft their (i) isw	2	1 for $-\frac{4}{6}x$ or 4/-6 or 4/6 o.e. or ft		
			(accept 0.67 or better) 0 for just rearranging to $y = -\frac{2}{3}x + 4$		
			o for just rearranging to $y = -\frac{1}{3}x + 4$	4	
3	(i) 0 or -3/2 o.e.	2	1 each		1
	(ii) $k < -9/8$ o.e. www	3	M2 for 3^2 (-)(-8 k) < 0 o.e. or -9/8 found or M1 for attempted use of b^2 - 4 ac (may be in quadratic formula); SC: allow M1 for 9 - 8 k < 0 and M1 ft	5	
4	(i) T	3	for $k > 9/8$ 3 for all correct, 2 for 3 correct. 1 for 2		1
	(ii) E		correct		
	(iii) T (iv) F			3	
5	y(x-2) = (x+3)	M1	for multiplying by x - 2; condone missing brackets		
	xy - 2y = x + 3 or ft [ft from earlier errors if of comparable difficulty – no ft if there are no xy terms]	M1	for expanding bracket and being at stage ready to collect <i>x</i> terms		
	xy - x = 2y + 3 or ft	M1	for collecting x and 'other' terms on opposite sides of eqn		
	$[x=]\frac{2y+3}{y-1} \text{ o.e. or ft}$	M1	for factorising and division		
	alt method:		for either method: award 4 marks only if fully correct		
	$y = 1 + \frac{5}{x - 2}$	M1	. ,		
	$y-1=\frac{5}{x-2}$	M1			
		M1			
	$x-2 = \frac{5}{y-1}$ $x = 2 + \frac{5}{y-1}$	M1		4	

18

					_
6	(i) 5 www	2	allow 2 for ±5; M1 for 25 ^{1/2} seen or for 1/5 seen or for using 25 ^{1/2} = 5 with another error (ie M1 for coping correctly with fraction and negative index or with square root)		
	(ii) $8x^{10}y^{13}z^4$ or $2^3x^{10}y^{13}z^4$	3	mark final answer; B2 for 3 elements correct, B1 for 2 elements correct; condone multn signs included, but -1 from total earned if addn signs	5	
7	(i) $\frac{5-\sqrt{3}}{22}$ or $\frac{5+(-1)\sqrt{3}}{22}$ or $\frac{5-1\sqrt{3}}{22}$	2	or $a = 5$, $b = -1$, $c = 22$; M1 for attempt to multiply numerator and denominator by $5 - \sqrt{3}$		
	(ii) 37 − 12√7 isw www	3	2 for 37 and 1 for $-12\sqrt{7}$ or M1 for 3 correct terms from $9-6\sqrt{7}-6\sqrt{7}+28$ or $9-3\sqrt{28}-3\sqrt{28}+28$ or $9-\sqrt{252}-\sqrt{252}+28$ o.e. eg using $2\sqrt{63}$ or M2 for $9-12\sqrt{7}+28$ or $9-6\sqrt{28}+28$ or $9-2\sqrt{252}+28$ or $9-\sqrt{1008}+28$ o.e.; 3 for $37-\sqrt{1008}$ but not other equivs	5	
8	-2000 www	4	M3 for $10 \times 5^2 \times (-2[x])^3$ o.e. or M2 for two of these elements or M1 for 10 or $(5\times4\times3)/(3\times2\times1)$ o.e. used $[^5C_3$ is not sufficient] or for 1 5 10 10 5 1 seen; or B3 for 2000; condone x^3 in ans; equivs: M3 for e.g $5^5\times10\times\left(-\frac{2}{5}[x]\right)^3$ o.e. $[5^5$ may be outside a bracket for whole expansion of all terms], M2 for two of these elements etc similarly for factor of 2 taken out at start	4	
9	(y-3)(y-4) = 0 y=3 or 4 cao	M1 A1	for factors giving two terms correct or attempt at quadratic formula or completing square or B2 (both roots needed)		
	$x = \pm \sqrt{3}$ or ± 2 cao	B2	B1 for 2 roots correct or ft their y (condone $\sqrt{3}$ and $\sqrt{4}$ for B1)	4	18

Section B

	tion E			·	,	
10	i	$(x-3)^2-7$	3	mark final answer; 1 for $a = 3$, 2 for $b = 7$ or M1 for $-3^2 + 2$; bod 3 for $(x - 3) - 7$	3	
	ii	(3, −7) or ft from (i)	1+1		2	
	iii	sketch of quadratic correct way up and through (0, 2)	G1	accept (0, 2) o.e. seen in this part [eg in table] if 2 not marked as intercept on graph		
		t.p. correct or ft from (ii)	G1	accept 3 and -7 marked on axes level with turning pt., or better; no ft for (0, 2) as min	2	
	iv	$x^2 - 6x + 2 = 2x - 14$ o.e.	M1	or their (i) = $2x - 14$		
		$x^2 - 8x + 16 = 0$	M1	dep on first M1; condone one error		
		$(x-4)^2 [=0]$	M1	or correct use of formula, giving equal roots; allow $(x + 4)^2$ o.e. ft $x^2 + 8x + 16$		
		x = 4, y = -6	A1	if M0M0M0, allow SC2 for showing (4, -6) is on both graphs (need to go on to show line is tgt to earn more)		
		equal/repeated roots [implies tgt] - must be explicitly stated; condone 'only one root [so tgt]' or 'line meets curve only once, so tgt' or	A1	or for use of calculus to show grad of line and curve are same when $x = 4$		
		'line touches curve only once' etc]			5	12

11	i	f(-4) used	M1		
		-128 + 112 + 28 - 12 [= 0]	A1	or B2 for $(x + 4)(2x^2 - x - 3)$ here; or correct division with no remainder	2
	ii	division of $f(x)$ by $(x + 4)$	M1	as far as $2x^3 + 8x^2$ in working, or two terms of $2x^2 - x - 3$ obtained by inspection etc (may be earned in (i)), or $f(-1) = 0$ found	
		$2x^2-x-3$	A1	$2x^2 - x - 3$ seen implies M1A1	
		(x+1)(2x-3)	A1		
		[f(x) =] (x + 4) (x + 1)(2x - 3)	A1	or B4; allow final A1 ft their factors if M1A1A0 earned	4
	iii	sketch of cubic correct way up	G1	ignore any graph of $y = f(x - 4)$	
		through −12 shown on y axis	G1	or coords stated near graph	
		roots -4, -1, 1.5 or ft shown on x	G1	or coords stated near graph	
		ans		if no curve drawn, but intercepts marked on axes, can earn max of G0G1G1	3
	iv	x(x-3)(2[x-4]-3) o.e. or $x(x-3)(x-5.5)$ or ft their factors	M1	or $2(x-4)^3 + 7(x-4)^2 - 7(x-4) - 12$ or stating roots are 0, 3 and 5.5 or ft; condone one error eg $2x - 7$ not $2x - 11$	
		correct expansion of one pair of brackets ft from their factors	M1	or for correct expn of $(x - 4)^3$ [allow unsimplified]; or for showing $g(0) = g(3) = g(5.5) = 0$ in given ans $g(x)$	
		correct completion to given answer	M1	allow M2 for working backwards from given answer to $x(x-3)(2x-11)$ and M1 for full completion with factors or roots	3

12	l i	0 1	1/11			
12		grad AB = $\frac{9-1}{31}$ or 2	M1			
		y-9=2(x-3) or $y-1=2(x+1)$	M1	ft their m , or subst coords of A or B in $y = $ their $m x + c$		
		y = 2x + 3 o.e.	A1	or B3	3	
	ii	mid pt of $AB = (1, 5)$	M1	condone not stated explicitly, but		
		grad perp = −1/grad AB	M1	used in eqn soi by use eg in eqn		
		$y-5=-\frac{1}{2}(x-1)$ o.e. or ft [no ft for just grad AB used]	M1	ft their grad and/or midpt, but M0 if their midpt not used; allow M1 for $y = -\frac{1}{2}x + c$ and then their midpt subst		
		at least one correct interim step towards given answer $2y + x =$ 11, and correct completion NB ans $2y + x =$ 11 given	M1	no ft; correct eqn only		
		alt method working back from		mark one method or the other, to		
		ans:		benefit of cand, not a mixture		
		$y = \frac{11 - x}{2}$ o.e.	M1			
		grad perp = −1/grad AB and showing/stating same as given line	M1	eg stating $-\frac{1}{2} \times 2 = -1$		
		finding into of their $y = 2x + 3$ and $2y + x = 11$ [= (1, 5)]	M1	or showing that (1, 5) is on $2y + x$ = 11, having found (1, 5) first	4	
		showing midpt of AB is (1, 5)	M1	[for both methods: for M4 must be fully correct]		
	iii	showing $(-1 - 5)^2 + (1 - 3)^2 = 40$	M1	at least one interim step needed for each mark; M0 for just $6^2 + 2^2 = 40$		
		showing B to centre = $\sqrt{40}$ or verifying that (3, 9) fits given circle	M1	with no other evidence such as a first line of working or a diagram; condone marks earned in reverse	2	
	iv	$(x-5)^2 + 3^2 = 40$	M1	order for subst $y = 0$ in circle eqn		
		$(x-5)^2 + 3^2 = 40$ $(x-5)^2 = 31$	M1	condone slip on rhs; or for rearrangement to zero (condone one error) and attempt at quad. formula [allow M1 M0 for $(x - 5)^2 = 40$ or for $(x - 5)^2 + 3^2 = 0$]		
		$x = 5 \pm \sqrt{31} \text{ or } \frac{10 \pm \sqrt{124}}{2} \text{ isw}$	A1	or $5 \pm \frac{\sqrt{124}}{2}$		40
				or $5\pm{2}$	3	12